Refik Soyer, Fabrizio Ruggeri, David Rios Insua, Cason Pierce, Cesar Guevara
{"title":"An adversarial risk analysis framework for software release decision support.","authors":"Refik Soyer, Fabrizio Ruggeri, David Rios Insua, Cason Pierce, Cesar Guevara","doi":"10.1111/risa.17711","DOIUrl":null,"url":null,"abstract":"<p><p>Recent artificial intelligence (AI) risk management frameworks and regulations place stringent quality constraints on AI systems to be deployed in an increasingly competitive environment. Thus, from a software engineering point of view, a major issue is deciding when to release an AI system to the market. This problem is complex due to, among other features, the uncertainty surrounding the AI system's reliability and safety as reflected through its faults, the various cost items involved, and the presence of competitors. A novel general adversarial risk analysis framework with multiple agents of two types (producers and buyers) is proposed to support an AI system developer in deciding when to release a product. The implementation of the proposed framework is illustrated with an example and extensions to cases with multiple producers and multiple buyers are discussed.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.17711","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent artificial intelligence (AI) risk management frameworks and regulations place stringent quality constraints on AI systems to be deployed in an increasingly competitive environment. Thus, from a software engineering point of view, a major issue is deciding when to release an AI system to the market. This problem is complex due to, among other features, the uncertainty surrounding the AI system's reliability and safety as reflected through its faults, the various cost items involved, and the presence of competitors. A novel general adversarial risk analysis framework with multiple agents of two types (producers and buyers) is proposed to support an AI system developer in deciding when to release a product. The implementation of the proposed framework is illustrated with an example and extensions to cases with multiple producers and multiple buyers are discussed.
期刊介绍:
Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include:
• Human health and safety risks
• Microbial risks
• Engineering
• Mathematical modeling
• Risk characterization
• Risk communication
• Risk management and decision-making
• Risk perception, acceptability, and ethics
• Laws and regulatory policy
• Ecological risks.