Hyperuniformity scaling of maximally random jammed packings of two-dimensional binary disks.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-12-01 DOI:10.1103/PhysRevE.110.064605
Charles Emmett Maher, Salvatore Torquato
{"title":"Hyperuniformity scaling of maximally random jammed packings of two-dimensional binary disks.","authors":"Charles Emmett Maher, Salvatore Torquato","doi":"10.1103/PhysRevE.110.064605","DOIUrl":null,"url":null,"abstract":"<p><p>Jammed (mechanically rigid) polydisperse circular-disk packings in two dimensions (2D) are popular models for structural glass formers. Maximally random jammed (MRJ) states, which are the most disordered packings subject to strict jamming, have been shown to be hyperuniform. The characterization of the hyperuniformity of MRJ circular-disk packings has covered only a very small part of the possible parameter space for the disk-size distributions. Hyperuniform heterogeneous media are those that anomalously suppress large-scale volume-fraction fluctuations compared to those in typical disordered systems, i.e., their spectral densities χ[over ̃]_{_{V}}(k) tend to zero as the wavenumber k≡|k| tends to zero and are often described by the power-law χ[over ̃]_{_{V}}(k)∼k^{α} as k→0 where α is the so-called hyperuniformity scaling exponent. In this work, we generate and characterize the structure of strictly jammed binary circular-disk packings with a size ratio β=D_{L}/D_{S}, where D_{L} and D_{S} are the large and small disk diameters, respectively, and the molar ratio of the two disk sizes is 1:1. In particular, by characterizing the rattler fraction ϕ_{R}, the fraction of configurations in an ensemble with fixed β that are isostatic, and the n-fold orientational order metrics ψ_{n} of ensembles of packings with a wide range of size ratios β, we show that size ratios 1.2≲β≲2.0 produce maximally random jammed (MRJ)-like states, which we show are the most disordered strictly jammed packings according to several criteria. Using the large-R scaling of the volume fraction variance σ_{_{V}}^{2}(R) associated with a spherical sampling window of radius R, we extract the hyperuniformity scaling exponent α from these packings, and find the function α(β) is maximized at β=1.4 (with α=0.450±0.002) within the range 1.2≤β≤2.0. Just outside of this range of β values, α(β) begins to decrease more quickly, and far outside of this range the packings are nonhyperuniform, i.e., α=0. Moreover, we compute the spectral density χ[over ̃]_{_{V}}(k) and use it to characterize the structure of the binary circular-disk packings across length scales and then use it to determine the time-dependent diffusion spreadability of these MRJ-like packings. The results from this work can be used to inform the experimental design of disordered hyperuniform thin-film materials with tunable degrees of orientational and translational disorder.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-1","pages":"064605"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.064605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Jammed (mechanically rigid) polydisperse circular-disk packings in two dimensions (2D) are popular models for structural glass formers. Maximally random jammed (MRJ) states, which are the most disordered packings subject to strict jamming, have been shown to be hyperuniform. The characterization of the hyperuniformity of MRJ circular-disk packings has covered only a very small part of the possible parameter space for the disk-size distributions. Hyperuniform heterogeneous media are those that anomalously suppress large-scale volume-fraction fluctuations compared to those in typical disordered systems, i.e., their spectral densities χ[over ̃]_{_{V}}(k) tend to zero as the wavenumber k≡|k| tends to zero and are often described by the power-law χ[over ̃]_{_{V}}(k)∼k^{α} as k→0 where α is the so-called hyperuniformity scaling exponent. In this work, we generate and characterize the structure of strictly jammed binary circular-disk packings with a size ratio β=D_{L}/D_{S}, where D_{L} and D_{S} are the large and small disk diameters, respectively, and the molar ratio of the two disk sizes is 1:1. In particular, by characterizing the rattler fraction ϕ_{R}, the fraction of configurations in an ensemble with fixed β that are isostatic, and the n-fold orientational order metrics ψ_{n} of ensembles of packings with a wide range of size ratios β, we show that size ratios 1.2≲β≲2.0 produce maximally random jammed (MRJ)-like states, which we show are the most disordered strictly jammed packings according to several criteria. Using the large-R scaling of the volume fraction variance σ_{_{V}}^{2}(R) associated with a spherical sampling window of radius R, we extract the hyperuniformity scaling exponent α from these packings, and find the function α(β) is maximized at β=1.4 (with α=0.450±0.002) within the range 1.2≤β≤2.0. Just outside of this range of β values, α(β) begins to decrease more quickly, and far outside of this range the packings are nonhyperuniform, i.e., α=0. Moreover, we compute the spectral density χ[over ̃]_{_{V}}(k) and use it to characterize the structure of the binary circular-disk packings across length scales and then use it to determine the time-dependent diffusion spreadability of these MRJ-like packings. The results from this work can be used to inform the experimental design of disordered hyperuniform thin-film materials with tunable degrees of orientational and translational disorder.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Fluid-network relations: Decay laws meet with spatial self-similarity, scale invariance, and control scaling. Semi-Markov processes in open quantum systems. III. Large deviations of first-passage-time statistics. Formation of motile cell clusters in heterogeneous model tumors: The role of cell-cell alignment. Full distribution of the ground-state energy of potentials with weak disorder. Sequence of pseudoequilibria describes the long-time behavior of the nonlinear noisy leaky integrate-and-fire model with large delay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1