Henrique A Lima, Edwin E Mozo Luis, Ismael S S Carrasco, Alex Hansen, Fernando A Oliveira
{"title":"Geometrical interpretation of critical exponents.","authors":"Henrique A Lima, Edwin E Mozo Luis, Ismael S S Carrasco, Alex Hansen, Fernando A Oliveira","doi":"10.1103/PhysRevE.110.L062107","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a hypothesis that the dynamics of equilibrium systems at criticality have their dynamics constricted to a fractal subspace. We relate the correlation fractal dimension associated with this subspace to the Fisher critical exponent controlling the singularity associated with the correlation function. This fractal subspace is different from that associated with the order parameter. We propose a relation between the correlation fractal dimension and the order parameter fractal dimension. The fractal subspace we identify has as a defining property that the correlation function is restored at the critical point by restricting the dynamics this way. We determine the correlation fractal dimension of the two-dimensional Ising model and validate it by computer simulations. We discuss growth models briefly in this context.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6","pages":"L062107"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.L062107","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a hypothesis that the dynamics of equilibrium systems at criticality have their dynamics constricted to a fractal subspace. We relate the correlation fractal dimension associated with this subspace to the Fisher critical exponent controlling the singularity associated with the correlation function. This fractal subspace is different from that associated with the order parameter. We propose a relation between the correlation fractal dimension and the order parameter fractal dimension. The fractal subspace we identify has as a defining property that the correlation function is restored at the critical point by restricting the dynamics this way. We determine the correlation fractal dimension of the two-dimensional Ising model and validate it by computer simulations. We discuss growth models briefly in this context.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.