Phytochrome-mediated shade avoidance responses impact the structure and composition of the bacterial phyllosphere microbiome of Arabidopsis.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2025-02-06 DOI:10.1186/s40793-025-00679-5
James A O'Rourke, Stacey A Vincent, Isabel E I Williams, Eleanor L Gascoyne, Paul F Devlin
{"title":"Phytochrome-mediated shade avoidance responses impact the structure and composition of the bacterial phyllosphere microbiome of Arabidopsis.","authors":"James A O'Rourke, Stacey A Vincent, Isabel E I Williams, Eleanor L Gascoyne, Paul F Devlin","doi":"10.1186/s40793-025-00679-5","DOIUrl":null,"url":null,"abstract":"<p><p>The shade avoidance response triggers a dramatic promotion of elongation growth, accompanied by a significant reprogramming of metabolic pathways as plants seek to prevent overtopping and adapt to vegetative shade. Here we demonstrate that simulated vegetative shade results in significant changes in the structure and composition of the phyllosphere bacterial microbiome. Our study uncovered significant shifts in the diversity, occurrence, abundance and activity of bacteria within the phyllosphere microbiome. A comparison of responses in both wild-type plants and phytochrome mutants, which inherently exhibit a shade-avoidance phenotype, revealed both indirect responses to host plant physiology and direct responses to light among the microbiota. Hierarchical clustering of response patterns further suggested that over a third of the taxa constituting the core phyllosphere microbiome in our assay show some degree of response to vegetative shade. Bacteria that increased in abundance on plants with a shade-avoidance phenotype corresponded to genera associated with beneficial traits such as enhanced disease resistance and growth promotion. Our findings suggests that plants manipulate their phyllosphere microbiome under shade conditions as a strategy to optimise fitness when competing for light. We discuss the implications of our findings in terms of furthering our understanding of plant-microbe signalling in the shaping of the phyllosphere microbiome and the possibility of manipulating the phyllosphere microbiome for plant health in an agricultural setting at high planting densities.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"20"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00679-5","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The shade avoidance response triggers a dramatic promotion of elongation growth, accompanied by a significant reprogramming of metabolic pathways as plants seek to prevent overtopping and adapt to vegetative shade. Here we demonstrate that simulated vegetative shade results in significant changes in the structure and composition of the phyllosphere bacterial microbiome. Our study uncovered significant shifts in the diversity, occurrence, abundance and activity of bacteria within the phyllosphere microbiome. A comparison of responses in both wild-type plants and phytochrome mutants, which inherently exhibit a shade-avoidance phenotype, revealed both indirect responses to host plant physiology and direct responses to light among the microbiota. Hierarchical clustering of response patterns further suggested that over a third of the taxa constituting the core phyllosphere microbiome in our assay show some degree of response to vegetative shade. Bacteria that increased in abundance on plants with a shade-avoidance phenotype corresponded to genera associated with beneficial traits such as enhanced disease resistance and growth promotion. Our findings suggests that plants manipulate their phyllosphere microbiome under shade conditions as a strategy to optimise fitness when competing for light. We discuss the implications of our findings in terms of furthering our understanding of plant-microbe signalling in the shaping of the phyllosphere microbiome and the possibility of manipulating the phyllosphere microbiome for plant health in an agricultural setting at high planting densities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
Ironing out the conflicts: iron supplementation reduces negatives bacterial interactions in the rhizosphere of an Atacama-endemic perennial grass. Alternative stable states of microbiome structure and soil ecosystem functions. Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. Effects of drainage and long-term tillage on greenhouse gas fluxes in a natural wetland: insights from microbial mechanisms. Microbial landscape of Indian homes: the microbial diversity, pathogens and antimicrobial resistome in urban residential spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1