{"title":"Microbial landscape of Indian homes: the microbial diversity, pathogens and antimicrobial resistome in urban residential spaces.","authors":"Saraswati Awasthi, Vikas M Hiremath, Sonam Nain, Shweta Malik, Vanita Srinivasan, Pooja Rose, Ashutosh Choudhury, Ritika Grover, Rakesh Sharma","doi":"10.1186/s40793-025-00684-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Urban dwellings serve as complex and diverse microbial community niches. Interactions and impact of house microbiome on the health of the inhabitants need to be clearly defined. Therefore, it is critical to understand the diversity of the house microbiota, the presence and abundance of potential pathogens, and antimicrobial resistance.</p><p><strong>Results: </strong>Shotgun metagenomics was used to analyze the samples collected from 9 locations in 10 houses in New Delhi, India. The microbiota includes more than 1409 bacterial, 5 fungal, and 474 viral species en masse. The most prevalent bacterial species were Moraxella osloensis, Paracoccus marcusii, Microbacterium aurum, Qipengyuania sp YIMB01966, and Paracoccus sphaerophysae, which were detected in at least 80 samples. The location was the primary factor influencing the microbiome diversity in the Indian houses. The overall diversity of different houses did not differ significantly from each other. The surface type influenced the microbial community, but the microbial diversity on the cemented and tiled floors did not vary significantly. A substantial fraction of the bacterial species were potentially pathogenic or opportunistic pathogens, including the ESKAPE pathogens. Escherichia coli was relatively more abundant in bedroom, foyer, and drawing room locations. Analysis of the house microbiome antimicrobial resistome revealed 669 subtypes representing 22 categories of antimicrobial resistance genes, with multidrug resistance genes being the most abundant, followed by aminoglycoside genes.</p><p><strong>Conclusions: </strong>This study provides the first insight into the microbiomes of houses in New Delhi, showing that these houses have diverse microbiomes and that the location within the house significantly influences the microbiota. The presence of potential pathogens and a repertoire of antimicrobial resistance genes reflect possible health risks, as these could lead to infectious disease transmission. This study builds a framework for understanding the microbial diversity of houses in terms of geographical location, environment, building design, cleaning habits, and impact on the health of occupants.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"25"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863970/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00684-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Urban dwellings serve as complex and diverse microbial community niches. Interactions and impact of house microbiome on the health of the inhabitants need to be clearly defined. Therefore, it is critical to understand the diversity of the house microbiota, the presence and abundance of potential pathogens, and antimicrobial resistance.
Results: Shotgun metagenomics was used to analyze the samples collected from 9 locations in 10 houses in New Delhi, India. The microbiota includes more than 1409 bacterial, 5 fungal, and 474 viral species en masse. The most prevalent bacterial species were Moraxella osloensis, Paracoccus marcusii, Microbacterium aurum, Qipengyuania sp YIMB01966, and Paracoccus sphaerophysae, which were detected in at least 80 samples. The location was the primary factor influencing the microbiome diversity in the Indian houses. The overall diversity of different houses did not differ significantly from each other. The surface type influenced the microbial community, but the microbial diversity on the cemented and tiled floors did not vary significantly. A substantial fraction of the bacterial species were potentially pathogenic or opportunistic pathogens, including the ESKAPE pathogens. Escherichia coli was relatively more abundant in bedroom, foyer, and drawing room locations. Analysis of the house microbiome antimicrobial resistome revealed 669 subtypes representing 22 categories of antimicrobial resistance genes, with multidrug resistance genes being the most abundant, followed by aminoglycoside genes.
Conclusions: This study provides the first insight into the microbiomes of houses in New Delhi, showing that these houses have diverse microbiomes and that the location within the house significantly influences the microbiota. The presence of potential pathogens and a repertoire of antimicrobial resistance genes reflect possible health risks, as these could lead to infectious disease transmission. This study builds a framework for understanding the microbial diversity of houses in terms of geographical location, environment, building design, cleaning habits, and impact on the health of occupants.
期刊介绍:
Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.