Hybrid discontinuous Galerkin method for the hyperbolic linear Boltzmann transport equation for multiscale problems.

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Physical Review E Pub Date : 2024-12-01 DOI:10.1103/PhysRevE.110.065301
Qizheng Sun, Xiaojing Liu, Xiang Chai, Hui He, Lianjie Wang, Bin Zhang, Tengfei Zhang
{"title":"Hybrid discontinuous Galerkin method for the hyperbolic linear Boltzmann transport equation for multiscale problems.","authors":"Qizheng Sun, Xiaojing Liu, Xiang Chai, Hui He, Lianjie Wang, Bin Zhang, Tengfei Zhang","doi":"10.1103/PhysRevE.110.065301","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an upwind hybrid discontinuous Galerkin (HDG) method for the first-order hyperbolic linear Boltzmann transport equation, featuring a flexible expansion suitable for multiscale scenarios. Within the HDG scheme, primal variables and numerical traces are introduced within and along faces of elements, respectively, interconnected through projection matrices. Given the variables in two stages, the HDG method offers significant flexibility in the selection of spatial orders. The global matrix system in this framework is exclusively constructed from numerical traces, thereby effectively reducing the degrees of freedom (DoFs). Additionally, the matrix system in each discrete direction features a blocked-lower-triangular stencil, enhancing the efficiency of solving hyperbolic equations through an upwind sweep sequence. Based on the proposed method, we perform an asymptotic analysis of the upwind-HDG method in the thick diffusion limit. The result reveals that the correct convergence of the upwind-HDG is closely associated with the properties of the response matrix L. A series of numerical experiments, including comparisons with the even-parity HDG, confirms the accuracy and stability of the upwind-HDG method in managing thick diffusive regimes and multiscale heterogeneous problems.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 6-2","pages":"065301"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.065301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an upwind hybrid discontinuous Galerkin (HDG) method for the first-order hyperbolic linear Boltzmann transport equation, featuring a flexible expansion suitable for multiscale scenarios. Within the HDG scheme, primal variables and numerical traces are introduced within and along faces of elements, respectively, interconnected through projection matrices. Given the variables in two stages, the HDG method offers significant flexibility in the selection of spatial orders. The global matrix system in this framework is exclusively constructed from numerical traces, thereby effectively reducing the degrees of freedom (DoFs). Additionally, the matrix system in each discrete direction features a blocked-lower-triangular stencil, enhancing the efficiency of solving hyperbolic equations through an upwind sweep sequence. Based on the proposed method, we perform an asymptotic analysis of the upwind-HDG method in the thick diffusion limit. The result reveals that the correct convergence of the upwind-HDG is closely associated with the properties of the response matrix L. A series of numerical experiments, including comparisons with the even-parity HDG, confirms the accuracy and stability of the upwind-HDG method in managing thick diffusive regimes and multiscale heterogeneous problems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Fluid-network relations: Decay laws meet with spatial self-similarity, scale invariance, and control scaling. Semi-Markov processes in open quantum systems. III. Large deviations of first-passage-time statistics. Formation of motile cell clusters in heterogeneous model tumors: The role of cell-cell alignment. Full distribution of the ground-state energy of potentials with weak disorder. Sequence of pseudoequilibria describes the long-time behavior of the nonlinear noisy leaky integrate-and-fire model with large delay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1