Chromosomal genome assembly resolves drug resistance loci in the parasitic nematode Teladorsagia circumcincta.

IF 5.5 1区 医学 Q1 MICROBIOLOGY PLoS Pathogens Pub Date : 2025-02-06 eCollection Date: 2025-02-01 DOI:10.1371/journal.ppat.1012820
Jennifer McIntyre, Alison Morrison, Kirsty Maitland, Duncan Berger, Daniel R G Price, Sam Dougan, Dionysis Grigoriadis, Alan Tracey, Nancy Holroyd, Katie Bull, Hannah Rose Vineer, Mike J Glover, Eric R Morgan, Alasdair J Nisbet, Tom N McNeilly, Yvonne Bartley, Neil Sargison, Dave Bartley, Matt Berriman, James A Cotton, Eileen Devaney, Roz Laing, Stephen R Doyle
{"title":"Chromosomal genome assembly resolves drug resistance loci in the parasitic nematode Teladorsagia circumcincta.","authors":"Jennifer McIntyre, Alison Morrison, Kirsty Maitland, Duncan Berger, Daniel R G Price, Sam Dougan, Dionysis Grigoriadis, Alan Tracey, Nancy Holroyd, Katie Bull, Hannah Rose Vineer, Mike J Glover, Eric R Morgan, Alasdair J Nisbet, Tom N McNeilly, Yvonne Bartley, Neil Sargison, Dave Bartley, Matt Berriman, James A Cotton, Eileen Devaney, Roz Laing, Stephen R Doyle","doi":"10.1371/journal.ppat.1012820","DOIUrl":null,"url":null,"abstract":"<p><p>The parasitic nematode Teladorsagia circumcincta is one of the most important pathogens of sheep and goats in temperate climates worldwide and can rapidly evolve resistance to drugs used to control it. To understand the genetics of drug resistance, we have generated a highly contiguous genome assembly for the UK T. circumcincta isolate, MTci2. Assembly using PacBio long-reads and Hi-C long-molecule scaffolding together with manual curation resulted in a 573 Mb assembly (N50 = 84 Mb, total scaffolds = 1,286) with five autosomal and one sex-linked chromosomal-scale scaffolds consistent with its karyotype. The genome resource was further improved via annotation of 22,948 genes, with manual curation of over 3,200 of these, resulting in a robust and near complete resource (96.3% complete protein BUSCOs) to support basic and applied research on this important veterinary pathogen. Genome-wide analyses of drug resistance, combining evidence from three distinct experiments, identified selection around known candidate genes for benzimidazole, levamisole and ivermectin resistance, as well as novel regions associated with ivermectin and moxidectin resistance. These insights into contemporary and historic genetic selection further emphasise the importance of contiguous genome assemblies in interpreting genome-wide genetic variation associated with drug resistance and identifying key loci to prioritise in developing diagnostic markers of anthelmintic resistance to support parasite control.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012820"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801625/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012820","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The parasitic nematode Teladorsagia circumcincta is one of the most important pathogens of sheep and goats in temperate climates worldwide and can rapidly evolve resistance to drugs used to control it. To understand the genetics of drug resistance, we have generated a highly contiguous genome assembly for the UK T. circumcincta isolate, MTci2. Assembly using PacBio long-reads and Hi-C long-molecule scaffolding together with manual curation resulted in a 573 Mb assembly (N50 = 84 Mb, total scaffolds = 1,286) with five autosomal and one sex-linked chromosomal-scale scaffolds consistent with its karyotype. The genome resource was further improved via annotation of 22,948 genes, with manual curation of over 3,200 of these, resulting in a robust and near complete resource (96.3% complete protein BUSCOs) to support basic and applied research on this important veterinary pathogen. Genome-wide analyses of drug resistance, combining evidence from three distinct experiments, identified selection around known candidate genes for benzimidazole, levamisole and ivermectin resistance, as well as novel regions associated with ivermectin and moxidectin resistance. These insights into contemporary and historic genetic selection further emphasise the importance of contiguous genome assemblies in interpreting genome-wide genetic variation associated with drug resistance and identifying key loci to prioritise in developing diagnostic markers of anthelmintic resistance to support parasite control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Establishment of reverse genetics systems for Colorado tick fever virus. Inhibition of the Integrated stress response by Epstein-Barr virus oncoprotein LMP1 attenuates epithelial cell differentiation and lytic viral reactivation. Intracellular Pseudomonas aeruginosa persist and evade antibiotic treatment in a wound infection model. Order among chaos: High throughput MYCroplanters can distinguish interacting drivers of host infection in a highly stochastic system. A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1