A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses.

IF 4.9 1区 医学 Q1 MICROBIOLOGY PLoS Pathogens Pub Date : 2025-02-11 eCollection Date: 2025-02-01 DOI:10.1371/journal.ppat.1012571
Benjamin Van Loy, Eugènia Pujol, Kenichi Kamata, Xiao Yin Lee, Nikolai Bakirtzoglou, Ria Van Berwaer, Julie Vandeput, Cato Mestdagh, Leentje Persoons, Brent De Wijngaert, Quinten Goovaerts, Sam Noppen, Maarten Jacquemyn, Kourosh Ahmadzadeh, Eline Bernaerts, Juan Martín-López, Celia Escriche, Bert Vanmechelen, Besir Krasniqi, Abhimanyu K Singh, Dirk Daelemans, Piet Maes, Patrick Matthys, Wim Dehaen, Jef Rozenski, Kalyan Das, Arnout Voet, Santiago Vázquez, Lieve Naesens, Annelies Stevaert
{"title":"A guanidine-based coronavirus replication inhibitor which targets the nsp15 endoribonuclease and selects for interferon-susceptible mutant viruses.","authors":"Benjamin Van Loy, Eugènia Pujol, Kenichi Kamata, Xiao Yin Lee, Nikolai Bakirtzoglou, Ria Van Berwaer, Julie Vandeput, Cato Mestdagh, Leentje Persoons, Brent De Wijngaert, Quinten Goovaerts, Sam Noppen, Maarten Jacquemyn, Kourosh Ahmadzadeh, Eline Bernaerts, Juan Martín-López, Celia Escriche, Bert Vanmechelen, Besir Krasniqi, Abhimanyu K Singh, Dirk Daelemans, Piet Maes, Patrick Matthys, Wim Dehaen, Jef Rozenski, Kalyan Das, Arnout Voet, Santiago Vázquez, Lieve Naesens, Annelies Stevaert","doi":"10.1371/journal.ppat.1012571","DOIUrl":null,"url":null,"abstract":"<p><p>The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 2","pages":"e1012571"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012571","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The approval of COVID-19 vaccines and antiviral drugs has been crucial to end the global health crisis caused by SARS-CoV-2. However, to prepare for future outbreaks from drug-resistant variants and novel zoonotic coronaviruses (CoVs), additional therapeutics with a distinct antiviral mechanism are needed. Here, we report a novel guanidine-substituted diphenylurea compound that suppresses CoV replication by interfering with the uridine-specific endoribonuclease (EndoU) activity of the viral non-structural protein-15 (nsp15). This compound, designated EPB-113, exhibits strong and selective cell culture activity against human coronavirus 229E (HCoV-229E) and also suppresses the replication of SARS-CoV-2. Viruses, selected under EPB-113 pressure, carried resistance sites at or near the catalytic His250 residue of the nsp15-EndoU domain. Although the best-known function of EndoU is to avoid induction of type I interferon (IFN-I) by lowering the levels of viral dsRNA, EPB-113 was found to mainly act via an IFN-independent mechanism, situated during viral RNA synthesis. Using a combination of biophysical and enzymatic assays with the recombinant nsp15 proteins from HCoV-229E and SARS-CoV-2, we discovered that EPB-113 enhances the EndoU cleavage activity of hexameric nsp15, while reducing its thermal stability. This mechanism explains why the virus escapes EPB-113 by acquiring catalytic site mutations which impair compound binding to nsp15 and abolish the EndoU activity. Since the EPB-113-resistant mutant viruses induce high levels of IFN-I and its effectors, they proved unable to replicate in human macrophages and were readily outcompeted by the wild-type virus upon co-infection of human fibroblast cells. Our findings suggest that antiviral targeting of nsp15 can be achieved with a molecule that induces a conformational change in this protein, resulting in higher EndoU activity and impairment of viral RNA synthesis. Based on the appealing mechanism and resistance profile of EPB-113, we conclude that nsp15 is a challenging but highly relevant drug target.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种以胍为基础的冠状病毒复制抑制剂,其靶向nsp15核糖核酸内切酶并选择干扰素敏感的突变病毒。
COVID-19疫苗和抗病毒药物的批准对于结束由SARS-CoV-2引起的全球卫生危机至关重要。然而,为了应对未来耐药性变异和新型人畜共患冠状病毒(cov)的暴发,需要具有独特抗病毒机制的其他治疗方法。在这里,我们报道了一种新的胍取代的二苯脲化合物,它通过干扰病毒非结构蛋白-15 (nsp15)的尿嘧啶特异性核糖核酸内切酶(EndoU)活性来抑制冠状病毒的复制。该化合物被命名为EPB-113,对人类冠状病毒229E (HCoV-229E)表现出很强的选择性细胞培养活性,并抑制SARS-CoV-2的复制。在EPB-113压力下选择的病毒在nsp15-EndoU结构域的催化His250残基或附近携带抗性位点。虽然EndoU最著名的功能是通过降低病毒dsRNA的水平来避免I型干扰素(IFN-I)的诱导,但EPB-113主要通过位于病毒RNA合成过程中的ifn -独立机制起作用。利用HCoV-229E和SARS-CoV-2重组nsp15蛋白的生物物理和酶促结合实验,我们发现EPB-113增强了六聚体nsp15的EndoU裂解活性,同时降低了其热稳定性。这一机制解释了为什么病毒通过获得破坏化合物与nsp15结合并破坏EndoU活性的催化位点突变来逃避EPB-113。由于epb -113抗性突变病毒诱导了高水平的IFN-I及其效应物,它们被证明不能在人巨噬细胞中复制,并且在与人成纤维细胞共感染时很容易被野生型病毒打败。我们的研究结果表明,抗病毒靶向nsp15可以通过诱导该蛋白构象变化的分子来实现,从而导致更高的EndoU活性和病毒RNA合成的损害。基于EPB-113的吸引机制和耐药特征,我们认为nsp15是一个具有挑战性但高度相关的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
A type III secretion system is required for Bordetella atropi invasion of host cells in vivo. It's not me, it's you: Anti-phage nuclease specificity inside a bacterium. Csep1P protein from Campylobacter concisus induces a chemokine-dominant inflammatory state in macrophages and enhances proinflammatory response to gut bacteria. MYSM1-mediated epigenetic modification dysregulation leads to immunosuppression and secondary infections in sepsis. The UBC/SIRT5/DRP1 axis regulates mitochondrial dynamics to alleviate Staphylococcus aureus-induced oxidative stress and senescence in bovine mammary epithelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1