Supracortical Microstimulation: Advances in Microelectrode Design and In Vivo Validation.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Annual Review of Biomedical Engineering Pub Date : 2025-02-06 DOI:10.1146/annurev-bioeng-103023-072855
Cecilia Schmitz, J Evan Smith, Iakov Rachinskiy, Bijan Pesaran, Flavia Vitale, Marc Sommer, Jonathan Viventi
{"title":"Supracortical Microstimulation: Advances in Microelectrode Design and In Vivo Validation.","authors":"Cecilia Schmitz, J Evan Smith, Iakov Rachinskiy, Bijan Pesaran, Flavia Vitale, Marc Sommer, Jonathan Viventi","doi":"10.1146/annurev-bioeng-103023-072855","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical stimulation of the brain is being developed as a treatment for an increasing number of neurological disorders. Technologies for delivering electrical stimulation are advancing rapidly and vary in specificity, coverage, and invasiveness. Supracortical microstimulation (SCMS), characterized by microelectrode contacts placed on the epidural or subdural cortical surface, achieves a balance between the advantages and limitations of other electrical stimulation technologies by delivering spatially precise activation without disrupting the integrity of the cortex. However, in vivo experiments involving SCMS have not been comprehensively summarized. Here, we review the field of SCMS, focusing on recent advances, to guide the development of clinically translatable supracortical microelectrodes. We also highlight the gaps in our understanding of the biophysical effects of this technology. Future work investigating the unique electrochemical properties of supracortical microelectrodes and validating SCMS in nonhuman primate preclinical studies can enable rapid clinical translation of innovative treatments for humans with neurological disorders.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-103023-072855","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical stimulation of the brain is being developed as a treatment for an increasing number of neurological disorders. Technologies for delivering electrical stimulation are advancing rapidly and vary in specificity, coverage, and invasiveness. Supracortical microstimulation (SCMS), characterized by microelectrode contacts placed on the epidural or subdural cortical surface, achieves a balance between the advantages and limitations of other electrical stimulation technologies by delivering spatially precise activation without disrupting the integrity of the cortex. However, in vivo experiments involving SCMS have not been comprehensively summarized. Here, we review the field of SCMS, focusing on recent advances, to guide the development of clinically translatable supracortical microelectrodes. We also highlight the gaps in our understanding of the biophysical effects of this technology. Future work investigating the unique electrochemical properties of supracortical microelectrodes and validating SCMS in nonhuman primate preclinical studies can enable rapid clinical translation of innovative treatments for humans with neurological disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Lessons Learned and Challenges Ahead in the Translation of Implantable Microscale Sensors and Actuators. Supracortical Microstimulation: Advances in Microelectrode Design and In Vivo Validation. Cell-Instructive Biomaterials with Native-Like Biochemical Complexity. Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion. Emerging Technologies for Multiphoton Writing and Reading of Polymeric Architectures for Biomedical Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1