Michela N Dumas, Christoph M Meier, Pierre Bize, Julien G A Martin
{"title":"Who Keeps the House after Divorcing? Partner and Nest Fidelity in the Long-Lived Alpine Swift.","authors":"Michela N Dumas, Christoph M Meier, Pierre Bize, Julien G A Martin","doi":"10.1086/733307","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractDespite the advantages of lasting pair bonds and the prevalence of monogamy, at least in avian species, some individuals switch mates (divorce). Divorce is generally considered to be adaptive (i.e., conferring net fitness benefits), although its causes and consequences often remain unclear, most notably regarding the genetic basis of this behavior. Using more than 30 years of data in a long-lived bird with obligate biparental care, the Alpine swift, we first described the overall patterns of mate and nest site fidelity and investigated the predictors of between-year divorce. We show that 16.6% of pairings ended in divorce, with low reproductive success and young age as predictors of divorce, and that males retained the nest site more often than females. By then studying individual repeatability and heritability of divorce, we show moderate repeatability in females and low repeatability in males and little additive genetic variance in either sex. Finally, we assessed the fitness consequences of divorce and report that an active decision to modify the pair bond (divorce) may be more beneficial than reactionary re-pairing following a partner's death. Overall, divorce may provide some reproductive benefits for Alpine swifts, but no microevolutionary potential of this behavior is evident in this population.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"205 2","pages":"224-239"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/733307","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractDespite the advantages of lasting pair bonds and the prevalence of monogamy, at least in avian species, some individuals switch mates (divorce). Divorce is generally considered to be adaptive (i.e., conferring net fitness benefits), although its causes and consequences often remain unclear, most notably regarding the genetic basis of this behavior. Using more than 30 years of data in a long-lived bird with obligate biparental care, the Alpine swift, we first described the overall patterns of mate and nest site fidelity and investigated the predictors of between-year divorce. We show that 16.6% of pairings ended in divorce, with low reproductive success and young age as predictors of divorce, and that males retained the nest site more often than females. By then studying individual repeatability and heritability of divorce, we show moderate repeatability in females and low repeatability in males and little additive genetic variance in either sex. Finally, we assessed the fitness consequences of divorce and report that an active decision to modify the pair bond (divorce) may be more beneficial than reactionary re-pairing following a partner's death. Overall, divorce may provide some reproductive benefits for Alpine swifts, but no microevolutionary potential of this behavior is evident in this population.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.