Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3.

IF 3.4 3区 生物学 Q3 CELL BIOLOGY Human Cell Pub Date : 2025-02-07 DOI:10.1007/s13577-025-01177-z
Lexi Zhang, Jianfeng Ye, Cheng Qiu
{"title":"Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3.","authors":"Lexi Zhang, Jianfeng Ye, Cheng Qiu","doi":"10.1007/s13577-025-01177-z","DOIUrl":null,"url":null,"abstract":"<p><p>Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Twist-related protein 2 (Twist2) is a basic helix/loop/helix transcription factor. However, the underlying effects of Twist2 in IRI remain to be elucidated. Herein, we found that the expression of Twist2 was significantly upregulated in renal tissues of mice induced by ischemia/reperfusion (I/R) and in human renal tubular epithelial cell HK-2 exposed to hypoxia-reoxygenation. We silenced Twist2 with RNAi technology. Twist2 knockdown alleviated renal pathological damage in mice. Twist2 depletion ameliorated IRI-induced mitochondrial dysfunction, such as increasing ATP content and mitochondrial DNA copy number and restoring mitochondrial membrane potential in the kidneys of mice, and similar results were observed in in vitro experiments. Twist2 interference increased the expression of LC3B and decreased the expression of p62 and mitochondrial membrane proteins TIMM23 and TOMM20 both in vivo and in vitro. Electron microscope and the co-localization of LC3B and mitotracker DsRed suggested the induction of autophagy and mitophagy after Twist2 knockdown in kidneys or cells. Mechanism studies revealed that Twist2 exerted a direct inhibitory effect on BCL2 interacting protein 3 (Bnip3) transcriptional activity by targeting the Bnip3 promoter. In hypoxia/reoxygenation-induced renal tubular epithelial cells, the interference of Bnip3 reversed the effect of Twist2 depletion on mitochondrial function and mitophagy. In conclusion, our findings suggest that the depletion of Twist2 exerts renoprotective effect in I/R-induced AKI. Twist2 regulates mitochondrial function and mitophagy in part by targeting and downregulating Bnip3. Our study provides new insights into the pathological mechanisms of I/R-induced AKI.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"50"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01177-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Twist-related protein 2 (Twist2) is a basic helix/loop/helix transcription factor. However, the underlying effects of Twist2 in IRI remain to be elucidated. Herein, we found that the expression of Twist2 was significantly upregulated in renal tissues of mice induced by ischemia/reperfusion (I/R) and in human renal tubular epithelial cell HK-2 exposed to hypoxia-reoxygenation. We silenced Twist2 with RNAi technology. Twist2 knockdown alleviated renal pathological damage in mice. Twist2 depletion ameliorated IRI-induced mitochondrial dysfunction, such as increasing ATP content and mitochondrial DNA copy number and restoring mitochondrial membrane potential in the kidneys of mice, and similar results were observed in in vitro experiments. Twist2 interference increased the expression of LC3B and decreased the expression of p62 and mitochondrial membrane proteins TIMM23 and TOMM20 both in vivo and in vitro. Electron microscope and the co-localization of LC3B and mitotracker DsRed suggested the induction of autophagy and mitophagy after Twist2 knockdown in kidneys or cells. Mechanism studies revealed that Twist2 exerted a direct inhibitory effect on BCL2 interacting protein 3 (Bnip3) transcriptional activity by targeting the Bnip3 promoter. In hypoxia/reoxygenation-induced renal tubular epithelial cells, the interference of Bnip3 reversed the effect of Twist2 depletion on mitochondrial function and mitophagy. In conclusion, our findings suggest that the depletion of Twist2 exerts renoprotective effect in I/R-induced AKI. Twist2 regulates mitochondrial function and mitophagy in part by targeting and downregulating Bnip3. Our study provides new insights into the pathological mechanisms of I/R-induced AKI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Cell
Human Cell CELL BIOLOGY-
CiteScore
5.90
自引率
2.30%
发文量
176
审稿时长
4.5 months
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis. Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3. Establishment and characterization of NCC-SFT1-C1: a novel patient-derived cell line of solitary fibrous tumor. The role of RhoA-ROCK signaling in benign prostatic hyperplasia: a review. Establishment of a human ovarian endometrioid carcinoma cell line by constitutive expression of cyclin-dependent kinase 4, cyclin D1 and telomerase reverse transcriptase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1