{"title":"Twist2 knockdown alleviates renal ischemia-reperfusion injury by maintaining mitochondrial function and enhancing mitophagy through Bnip3.","authors":"Lexi Zhang, Jianfeng Ye, Cheng Qiu","doi":"10.1007/s13577-025-01177-z","DOIUrl":null,"url":null,"abstract":"<p><p>Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Twist-related protein 2 (Twist2) is a basic helix/loop/helix transcription factor. However, the underlying effects of Twist2 in IRI remain to be elucidated. Herein, we found that the expression of Twist2 was significantly upregulated in renal tissues of mice induced by ischemia/reperfusion (I/R) and in human renal tubular epithelial cell HK-2 exposed to hypoxia-reoxygenation. We silenced Twist2 with RNAi technology. Twist2 knockdown alleviated renal pathological damage in mice. Twist2 depletion ameliorated IRI-induced mitochondrial dysfunction, such as increasing ATP content and mitochondrial DNA copy number and restoring mitochondrial membrane potential in the kidneys of mice, and similar results were observed in in vitro experiments. Twist2 interference increased the expression of LC3B and decreased the expression of p62 and mitochondrial membrane proteins TIMM23 and TOMM20 both in vivo and in vitro. Electron microscope and the co-localization of LC3B and mitotracker DsRed suggested the induction of autophagy and mitophagy after Twist2 knockdown in kidneys or cells. Mechanism studies revealed that Twist2 exerted a direct inhibitory effect on BCL2 interacting protein 3 (Bnip3) transcriptional activity by targeting the Bnip3 promoter. In hypoxia/reoxygenation-induced renal tubular epithelial cells, the interference of Bnip3 reversed the effect of Twist2 depletion on mitochondrial function and mitophagy. In conclusion, our findings suggest that the depletion of Twist2 exerts renoprotective effect in I/R-induced AKI. Twist2 regulates mitochondrial function and mitophagy in part by targeting and downregulating Bnip3. Our study provides new insights into the pathological mechanisms of I/R-induced AKI.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":"38 2","pages":"50"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-025-01177-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI). Twist-related protein 2 (Twist2) is a basic helix/loop/helix transcription factor. However, the underlying effects of Twist2 in IRI remain to be elucidated. Herein, we found that the expression of Twist2 was significantly upregulated in renal tissues of mice induced by ischemia/reperfusion (I/R) and in human renal tubular epithelial cell HK-2 exposed to hypoxia-reoxygenation. We silenced Twist2 with RNAi technology. Twist2 knockdown alleviated renal pathological damage in mice. Twist2 depletion ameliorated IRI-induced mitochondrial dysfunction, such as increasing ATP content and mitochondrial DNA copy number and restoring mitochondrial membrane potential in the kidneys of mice, and similar results were observed in in vitro experiments. Twist2 interference increased the expression of LC3B and decreased the expression of p62 and mitochondrial membrane proteins TIMM23 and TOMM20 both in vivo and in vitro. Electron microscope and the co-localization of LC3B and mitotracker DsRed suggested the induction of autophagy and mitophagy after Twist2 knockdown in kidneys or cells. Mechanism studies revealed that Twist2 exerted a direct inhibitory effect on BCL2 interacting protein 3 (Bnip3) transcriptional activity by targeting the Bnip3 promoter. In hypoxia/reoxygenation-induced renal tubular epithelial cells, the interference of Bnip3 reversed the effect of Twist2 depletion on mitochondrial function and mitophagy. In conclusion, our findings suggest that the depletion of Twist2 exerts renoprotective effect in I/R-induced AKI. Twist2 regulates mitochondrial function and mitophagy in part by targeting and downregulating Bnip3. Our study provides new insights into the pathological mechanisms of I/R-induced AKI.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.