Project Victoria: A pragmatic data model to automate RWE generation from the national French claims database.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Health Informatics Journal Pub Date : 2025-01-01 DOI:10.1177/14604582251318250
Kevin Ouazzani, Xavier Ansolabehere, Florence Journeau, Alexandre Vidal, Nicolas Jaubourg, Maxime Doublet, Raphael Thollot, Arnaud Fabre, Nicolas Glatt
{"title":"Project Victoria: A pragmatic data model to automate RWE generation from the national French claims database.","authors":"Kevin Ouazzani, Xavier Ansolabehere, Florence Journeau, Alexandre Vidal, Nicolas Jaubourg, Maxime Doublet, Raphael Thollot, Arnaud Fabre, Nicolas Glatt","doi":"10.1177/14604582251318250","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This paper describes Victoria, an empirically built data pipeline for SNDS to: - Build an automated, scalable pipeline supporting changes to the data model inherent to the use of large databases, - Deliver a documented pipeline with clear processes, enabling scientific, epidemiological researches, - Ease access to SNDS data in compliance with regulatory requirements. <b>Methods:</b> This paper describes the 2-steps process of the Victoria pipeline and its final output. The initial cleaning step consists in formatting, deleting empty, error or duplicate records and renaming variables without changing their values, accordingly with the official SNDS documentation. The second step consists in creating 2 linearised data models: every line of each table is an event, and each table is indexed with a unique patient identifier, without the need for a central patient or identifier table. These 2 models are: - the epidemiological model, used for answering most of the research questions requiring population phenotyping (demography, diagnosis, procedures characteristics). - the medico-economic model is used for costs and healthcare consumption analyses. It contains more complex information about reimbursements rates and the data quality assessment is focused on costs rather than medico-administrative information. <b>Results:</b> The pipeline was executed on 2 different datasets representing ∼85 000 and ∼870 000 beneficiaries with the following configuration: one master with 4 cores and 16Go of RAM and respectively 4 and 6 workers. The total execution time for the smaller dataset was 25 h and 96 h for the larger one. The longest part of those times is represented by the format conversion to parquet. The cleaning step took only 4 h in both cases. The epidemiological model took 344 min for the smaller dataset and 1934 min for the larger one. The medico-economic model took the longest time with 704 min and 2145 min, respectively. <b>Conclusion:</b> Victoria pipeline is a successfully implemented SNDS pipeline. Compared to previous pipelines, reviewability is part of its design as unit tests and quality assessments can natively be developed to ensure data and analysis quality. The pipeline has been used for 2 published studies. The recent work toward OMOP conversion will be integrated in upcoming versions and, as Victoria is set to run on a CD platform, the potential evolution if SNDS format can be considered.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 1","pages":"14604582251318250"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582251318250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This paper describes Victoria, an empirically built data pipeline for SNDS to: - Build an automated, scalable pipeline supporting changes to the data model inherent to the use of large databases, - Deliver a documented pipeline with clear processes, enabling scientific, epidemiological researches, - Ease access to SNDS data in compliance with regulatory requirements. Methods: This paper describes the 2-steps process of the Victoria pipeline and its final output. The initial cleaning step consists in formatting, deleting empty, error or duplicate records and renaming variables without changing their values, accordingly with the official SNDS documentation. The second step consists in creating 2 linearised data models: every line of each table is an event, and each table is indexed with a unique patient identifier, without the need for a central patient or identifier table. These 2 models are: - the epidemiological model, used for answering most of the research questions requiring population phenotyping (demography, diagnosis, procedures characteristics). - the medico-economic model is used for costs and healthcare consumption analyses. It contains more complex information about reimbursements rates and the data quality assessment is focused on costs rather than medico-administrative information. Results: The pipeline was executed on 2 different datasets representing ∼85 000 and ∼870 000 beneficiaries with the following configuration: one master with 4 cores and 16Go of RAM and respectively 4 and 6 workers. The total execution time for the smaller dataset was 25 h and 96 h for the larger one. The longest part of those times is represented by the format conversion to parquet. The cleaning step took only 4 h in both cases. The epidemiological model took 344 min for the smaller dataset and 1934 min for the larger one. The medico-economic model took the longest time with 704 min and 2145 min, respectively. Conclusion: Victoria pipeline is a successfully implemented SNDS pipeline. Compared to previous pipelines, reviewability is part of its design as unit tests and quality assessments can natively be developed to ensure data and analysis quality. The pipeline has been used for 2 published studies. The recent work toward OMOP conversion will be integrated in upcoming versions and, as Victoria is set to run on a CD platform, the potential evolution if SNDS format can be considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
期刊最新文献
Researching public health datasets in the era of deep learning: a systematic literature review. A blueprint for large language model-augmented telehealth for HIV mitigation in Indonesia: A scoping review of a novel therapeutic modality. Advancing African American and hispanic health literacy with a bilingual, personalized, prevention smartphone application. Evaluating the quality of Spanish-language information for patients with type 2 diabetes on YouTube and Facebook. Pathways to usage intention of mobile health apps among hypertensive patients: A fuzzy-set qualitative comparative analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1