Population structure, selection signal and introgression of gamecocks revealed by whole genome sequencing

IF 7 1区 农林科学 Q1 Agricultural and Biological Sciences Journal of Animal Science and Biotechnology Pub Date : 2025-02-08 DOI:10.1186/s40104-025-01154-4
Naiyi Xu, Linyun Zhang, Feifan Chen, Zhengfu Feng, Jiangtao Zheng, DongHua Li, Yongju Zhao, Xiangtao Kang
{"title":"Population structure, selection signal and introgression of gamecocks revealed by whole genome sequencing","authors":"Naiyi Xu, Linyun Zhang, Feifan Chen, Zhengfu Feng, Jiangtao Zheng, DongHua Li, Yongju Zhao, Xiangtao Kang","doi":"10.1186/s40104-025-01154-4","DOIUrl":null,"url":null,"abstract":"As an important genetic resource of chickens, gamecock has unique morphological and behavioral characteristics such as large size, muscular development and strong aggression, making it a good model for studying muscle development and behavior patterns, as well as an excellent breeding material. Gamecocks are distributed worldwide, forming different breeds and strains. However, the single or multiple origin of global gamecocks has not been fully established and much remains unknown about genetic introgression events between gamecocks and other chickens. Therefore, in this study, based on whole genome data of gamecocks, Chinese indigenous chickens, commercial chickens and wild jungle fowls, we performed population structure analysis, selection signal analysis, and genomic introgression analysis of gamecocks. The population structure analysis revealed that gamecocks have multiple origins. In addition, we used Fst, π-Ratio and XP-EHH methods to explore the candidate signatures of positive selection in gamecocks. A total number of fifteen shared candidate genes were identified using the three different detection strategies. Among these candidate genes, ETV1, DGKB, AGMO, MEOX2, ISPD and PLCB4 are related to the growth and muscle development, fighting performance and neurodevelopment of gamecocks. Furthermore, we detected the introgression event at the MYBPHL region from the Gallus sonneratii into Euramerican gamecocks and at the CPZ gene region from the Gallus gallus gallus into multiple gamecock populations, respectively, indicating the introgression from the wild junglefowl may impact the skeletal and muscle development as well as aggressive behavior of gamecocks. In summary, we conducted a genome-wide exploration of gamecocks from multiple regions worldwide. Our analysis confirmed multiple origins of gamecocks and detected several candidate genes that are possibly related to important traits and characteristics in gamecocks. More importantly, this is the first study that has detected introgression events and genes from wild jungle fowls to gamecocks, which provides evidence of the wild jungle fowls contributing to the genetic diversity of gamecocks. Our findings offer new perspectives on the impact of introgression on gamecocks, and provide a basis for further resource conservation and utilization of gamecock, as well as provide excellent material for the genetic improvement of domestic chickens.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"26 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-025-01154-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

As an important genetic resource of chickens, gamecock has unique morphological and behavioral characteristics such as large size, muscular development and strong aggression, making it a good model for studying muscle development and behavior patterns, as well as an excellent breeding material. Gamecocks are distributed worldwide, forming different breeds and strains. However, the single or multiple origin of global gamecocks has not been fully established and much remains unknown about genetic introgression events between gamecocks and other chickens. Therefore, in this study, based on whole genome data of gamecocks, Chinese indigenous chickens, commercial chickens and wild jungle fowls, we performed population structure analysis, selection signal analysis, and genomic introgression analysis of gamecocks. The population structure analysis revealed that gamecocks have multiple origins. In addition, we used Fst, π-Ratio and XP-EHH methods to explore the candidate signatures of positive selection in gamecocks. A total number of fifteen shared candidate genes were identified using the three different detection strategies. Among these candidate genes, ETV1, DGKB, AGMO, MEOX2, ISPD and PLCB4 are related to the growth and muscle development, fighting performance and neurodevelopment of gamecocks. Furthermore, we detected the introgression event at the MYBPHL region from the Gallus sonneratii into Euramerican gamecocks and at the CPZ gene region from the Gallus gallus gallus into multiple gamecock populations, respectively, indicating the introgression from the wild junglefowl may impact the skeletal and muscle development as well as aggressive behavior of gamecocks. In summary, we conducted a genome-wide exploration of gamecocks from multiple regions worldwide. Our analysis confirmed multiple origins of gamecocks and detected several candidate genes that are possibly related to important traits and characteristics in gamecocks. More importantly, this is the first study that has detected introgression events and genes from wild jungle fowls to gamecocks, which provides evidence of the wild jungle fowls contributing to the genetic diversity of gamecocks. Our findings offer new perspectives on the impact of introgression on gamecocks, and provide a basis for further resource conservation and utilization of gamecock, as well as provide excellent material for the genetic improvement of domestic chickens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Animal Science and Biotechnology
Journal of Animal Science and Biotechnology AGRICULTURE, DAIRY & ANIMAL SCIENCE-
CiteScore
9.90
自引率
2.90%
发文量
822
审稿时长
17 weeks
期刊介绍: Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.
期刊最新文献
Single-nucleus transcriptomes reveal the underlying mechanisms of dynamic whitening in thermogenic adipose tissue in goats Population structure, selection signal and introgression of gamecocks revealed by whole genome sequencing Advancing the Indian cattle pangenome: characterizing non-reference sequences in Bos indicus Sorghum surpasses wheat as a feed grain for broiler chickens following dietary crude protein reductions A novel protein encoded by porcine circANKRD17 activates the PPAR pathway to regulate intramuscular fat metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1