Indoor visual positioning using stationary semantic distribution registration and building information modeling

IF 11.5 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Automation in Construction Pub Date : 2025-02-08 DOI:10.1016/j.autcon.2025.106033
Xiaoping Zhou , Yukang Wang , Jichao Zhao , Maozu Guo
{"title":"Indoor visual positioning using stationary semantic distribution registration and building information modeling","authors":"Xiaoping Zhou ,&nbsp;Yukang Wang ,&nbsp;Jichao Zhao ,&nbsp;Maozu Guo","doi":"10.1016/j.autcon.2025.106033","DOIUrl":null,"url":null,"abstract":"<div><div>Indoor Visual Positioning (IVP) is a prerequisite for applications like indoor location-based services in smart buildings. Building Information Modeling (BIM), representing physical and functional characteristics of buildings, is widely used in IVP. Existing BIM-based IVP methods register visual features from sensed images to BIM but suffer inaccuracies caused by dramatic disturbances from unstable objects like chairs. Stationary objects like walls may address this issue and provide a more reliable IVP scheme, yet it remains to be explored. This paper proposes an IVP scheme leveraging stationary object registration from sequential images to BIM, termed Stationary Semantic Distribution-driven Visual Positioning (S2VP). In the offline phase, S2VP generates “stationary semantic distribution-positions” datasets from BIM. During positioning, the stationary semantic distribution of sensed images is first estimated, and the indoor position is computed via a particle filter model. Experiments show that S2VP achieves an average positioning error of 0.37 m, outperforming existing methods.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"172 ","pages":"Article 106033"},"PeriodicalIF":11.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525000731","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Indoor Visual Positioning (IVP) is a prerequisite for applications like indoor location-based services in smart buildings. Building Information Modeling (BIM), representing physical and functional characteristics of buildings, is widely used in IVP. Existing BIM-based IVP methods register visual features from sensed images to BIM but suffer inaccuracies caused by dramatic disturbances from unstable objects like chairs. Stationary objects like walls may address this issue and provide a more reliable IVP scheme, yet it remains to be explored. This paper proposes an IVP scheme leveraging stationary object registration from sequential images to BIM, termed Stationary Semantic Distribution-driven Visual Positioning (S2VP). In the offline phase, S2VP generates “stationary semantic distribution-positions” datasets from BIM. During positioning, the stationary semantic distribution of sensed images is first estimated, and the indoor position is computed via a particle filter model. Experiments show that S2VP achieves an average positioning error of 0.37 m, outperforming existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于静止语义分布配准和建筑信息建模的室内视觉定位
室内视觉定位(IVP)是智能建筑中室内定位服务等应用的先决条件。建筑信息模型(BIM)在IVP中得到了广泛的应用,它代表了建筑的物理和功能特征。现有的基于BIM的IVP方法将感知图像的视觉特征注册到BIM中,但由于椅子等不稳定物体的剧烈干扰而存在不准确性。像墙壁这样的固定物体可能会解决这个问题,并提供更可靠的IVP方案,但仍有待探索。本文提出了一种利用从序列图像到BIM的静止物体配准的IVP方案,称为静止语义分布驱动的视觉定位(S2VP)。在离线阶段,S2VP从BIM中生成“静态语义分布位置”数据集。在定位过程中,首先估计感测图像的静态语义分布,然后通过粒子滤波模型计算室内位置。实验表明,S2VP的平均定位误差为0.37 m,优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
期刊最新文献
Automating dense GPR simulations for C-scan imaging of subsurface infrastructure Hierarchical fusion network for joint segmentation and VQA in road pavement inspection Zero-shot depth map restoration from sparse infrastructure point clouds using diffusion models and prompted segmentation Prefabricated Buildings: Cross-Database CiteSpace Bibliometric Analysis of Research Trends and Hotspots Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1