{"title":"Vegetation pattern formation in Daisyworld model with greenhouse effect","authors":"Maya Kageyama","doi":"10.1016/j.ecolmodel.2025.111034","DOIUrl":null,"url":null,"abstract":"<div><div>A vegetation pattern is closely related to its environmental conditions. The quantitative and qualitative effects of environmental changes due to increased greenhouse gases on vegetation patterns should thus be urgently investigated. Although the simple Daisyworld model, a conceptual Earth system model introduced in the 1980s, limits life on the plant to two species of daisies, it is expected to provide new insights into the relationship between vegetation patterns and environmental conditions. This study investigates the effects of greenhouse gases on plants and their environment in a two-dimensional Daisyworld model that takes the greenhouse effect into account. Specifically, the effect of varying the emissivity of the atmosphere for longwave radiation on the temperature and distribution of daisies on Daisyworld is examined. A numerical simulation of the two-dimensional Daisyworld model shows that the two species of daisies are unable to adapt to the climate change caused by an intensifying greenhouse effect and thus become extinct.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"502 ","pages":"Article 111034"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025000201","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A vegetation pattern is closely related to its environmental conditions. The quantitative and qualitative effects of environmental changes due to increased greenhouse gases on vegetation patterns should thus be urgently investigated. Although the simple Daisyworld model, a conceptual Earth system model introduced in the 1980s, limits life on the plant to two species of daisies, it is expected to provide new insights into the relationship between vegetation patterns and environmental conditions. This study investigates the effects of greenhouse gases on plants and their environment in a two-dimensional Daisyworld model that takes the greenhouse effect into account. Specifically, the effect of varying the emissivity of the atmosphere for longwave radiation on the temperature and distribution of daisies on Daisyworld is examined. A numerical simulation of the two-dimensional Daisyworld model shows that the two species of daisies are unable to adapt to the climate change caused by an intensifying greenhouse effect and thus become extinct.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).