Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation

Qian Chen , Pei Li , Xiaoliang Wei , Changsheng Chen , Wei Dang , Haikuan Nie , Jinchuan Zhang
{"title":"Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation","authors":"Qian Chen ,&nbsp;Pei Li ,&nbsp;Xiaoliang Wei ,&nbsp;Changsheng Chen ,&nbsp;Wei Dang ,&nbsp;Haikuan Nie ,&nbsp;Jinchuan Zhang","doi":"10.1016/j.uncres.2025.100151","DOIUrl":null,"url":null,"abstract":"<div><div>The Permian Taiyuan and Shanxi coal-bearing formations are recognized as the primary source rocks and promising shale gas reservoirs in North China. Based on lithologic observations, mineral and major elemental analyses of the Shanxi Sahle in the Southern North China Basin (SNCB), we conducted a preliminary investigation into the depositional environment, climate, and factors controlling the organic matter (OM) accumulation. The main findings are as follows: (1) The Shanxi Formation results from a transition in depositional environment, shifting from tidal flats to delta plains. The Shanxi Shale is primarily composed of clay minerals (34.24 %–75.20 %) and quartz (23.80%–46.39 %), with a notably low carbonate content (&lt;5 %). (2) Illite in the lower sections of the Shanxi Shale is likely sourced from detrital input rather than chemical conversion, while the dissolution of potassium feldspar may account for the elevated kaolinite content. This is further supported by the oxygen level variations between the lower and upper shale intervals. Moreover, no significant positive correlation was observed between SiO<sub>2</sub> and Al/Na ratios, nor between clay minerals and total organic carbon (TOC) content. This suggests that the intensity of OM modification prior to diagenesis plays a pivotal role in OM accumulation, aligning with the positive correlation between inertinite proportion and TOC content. (3) Organic matter inputs from fluvial systems were likely influenced by upstream mire conditions, where precursor peat may have accumulated. Unlike marine shale, the intensity of weathering, which varies with climate and transportation distance, is considered to have significantly impacted both the maceral composition and OM richness in the tide-delta deposited Shanxi Shale.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"6 ","pages":"Article 100151"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519025000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Permian Taiyuan and Shanxi coal-bearing formations are recognized as the primary source rocks and promising shale gas reservoirs in North China. Based on lithologic observations, mineral and major elemental analyses of the Shanxi Sahle in the Southern North China Basin (SNCB), we conducted a preliminary investigation into the depositional environment, climate, and factors controlling the organic matter (OM) accumulation. The main findings are as follows: (1) The Shanxi Formation results from a transition in depositional environment, shifting from tidal flats to delta plains. The Shanxi Shale is primarily composed of clay minerals (34.24 %–75.20 %) and quartz (23.80%–46.39 %), with a notably low carbonate content (<5 %). (2) Illite in the lower sections of the Shanxi Shale is likely sourced from detrital input rather than chemical conversion, while the dissolution of potassium feldspar may account for the elevated kaolinite content. This is further supported by the oxygen level variations between the lower and upper shale intervals. Moreover, no significant positive correlation was observed between SiO2 and Al/Na ratios, nor between clay minerals and total organic carbon (TOC) content. This suggests that the intensity of OM modification prior to diagenesis plays a pivotal role in OM accumulation, aligning with the positive correlation between inertinite proportion and TOC content. (3) Organic matter inputs from fluvial systems were likely influenced by upstream mire conditions, where precursor peat may have accumulated. Unlike marine shale, the intensity of weathering, which varies with climate and transportation distance, is considered to have significantly impacted both the maceral composition and OM richness in the tide-delta deposited Shanxi Shale.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
The failure behavior of prefabricated fractured sandstone with different rock bridge inclination angles under freeze-thaw cycles Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River Exploring geothermal energy as a sustainable source of energy: A systemic review Method for calculating porosity in tight sandstone reservoir thin sections based on ICSO intelligent algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1