Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River

Yuchen Tian , Shiqi Liu , Sijian Zheng , Shuxun Sang , Yinghai Liu , Shiheng Chen , Helong Zhang , Yanzhi Liu , Yuntian Jiang , Zekun Yue , Wenkai Wang
{"title":"Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River","authors":"Yuchen Tian ,&nbsp;Shiqi Liu ,&nbsp;Sijian Zheng ,&nbsp;Shuxun Sang ,&nbsp;Yinghai Liu ,&nbsp;Shiheng Chen ,&nbsp;Helong Zhang ,&nbsp;Yanzhi Liu ,&nbsp;Yuntian Jiang ,&nbsp;Zekun Yue ,&nbsp;Wenkai Wang","doi":"10.1016/j.uncres.2025.100155","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> geological storage is seen as a key technology for reaching carbon neutrality. The Qingjiang Basin, located in Jiangxi, China, is experiencing rapid industrialization and urbanization leading to increased natural resource and energy consumption. The basin is located in the middle and lower reaches of the Yangtze River. A study was conducted in response to the geological characteristics of the Qingjiang Basin to optimize caprock for CO<sub>2</sub> geological storage in saline aquifers and assess its potential. The research initially outlined the regional geological background of the Qingjiang Basin, including its tectonic position, stratigraphic distribution, sedimentary features, and the division of secondary structural units. By combining the regional geological conditions, the study analyzed the basin's formation and evolution history, sedimentary characteristics, reservoir and caprock development features, and geothermal geological conditions. This analysis provided critical geological factor evaluations for CO<sub>2</sub> storage. Employing the calculation method proposed by the Carbon Sequestration Leadership Forum (CSLF), the study estimated the CO<sub>2</sub> storage capacity in the deep saline aquifers of the Qingjiang Basin. The study revealed a total storage potential of 6.76 × 10<sup>8</sup> tons, with the central depression zone having the greatest potential, accounting for over 90 % of the total. Based on these findings, a hierarchical structure model was constructed, including three evaluation index layers and 21 evaluation indicators. A fuzzy comprehensive evaluation method combining the analytic hierarchy process and weighted judgment method was used to assess the suitability of CO<sub>2</sub> geological storage in the Qingjiang Basin. The evaluation results indicated that the central depression zone had the highest comprehensive score and the best suitability for storage, making it the most favorable area for CO<sub>2</sub> storage in the Qingjiang Basin. The research outcomes can provide theoretical support for advancing the study of CO<sub>2</sub> saline aquifer storage in the lower reaches of the Yangtze River region in China.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"6 ","pages":"Article 100155"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519025000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CO2 geological storage is seen as a key technology for reaching carbon neutrality. The Qingjiang Basin, located in Jiangxi, China, is experiencing rapid industrialization and urbanization leading to increased natural resource and energy consumption. The basin is located in the middle and lower reaches of the Yangtze River. A study was conducted in response to the geological characteristics of the Qingjiang Basin to optimize caprock for CO2 geological storage in saline aquifers and assess its potential. The research initially outlined the regional geological background of the Qingjiang Basin, including its tectonic position, stratigraphic distribution, sedimentary features, and the division of secondary structural units. By combining the regional geological conditions, the study analyzed the basin's formation and evolution history, sedimentary characteristics, reservoir and caprock development features, and geothermal geological conditions. This analysis provided critical geological factor evaluations for CO2 storage. Employing the calculation method proposed by the Carbon Sequestration Leadership Forum (CSLF), the study estimated the CO2 storage capacity in the deep saline aquifers of the Qingjiang Basin. The study revealed a total storage potential of 6.76 × 108 tons, with the central depression zone having the greatest potential, accounting for over 90 % of the total. Based on these findings, a hierarchical structure model was constructed, including three evaluation index layers and 21 evaluation indicators. A fuzzy comprehensive evaluation method combining the analytic hierarchy process and weighted judgment method was used to assess the suitability of CO2 geological storage in the Qingjiang Basin. The evaluation results indicated that the central depression zone had the highest comprehensive score and the best suitability for storage, making it the most favorable area for CO2 storage in the Qingjiang Basin. The research outcomes can provide theoretical support for advancing the study of CO2 saline aquifer storage in the lower reaches of the Yangtze River region in China.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
期刊最新文献
Mineralogy and geochemistry of shale from Shanxi Formation, Southern North China Basin: Implication for organic matter accumulation Optimization and potential assessment of CO2 geological storage caprock in the saline aquifers of the Qingjiang Basin, middle and lower reaches of the Yangtze River Exploring geothermal energy as a sustainable source of energy: A systemic review Offshore wind technology of India: Potential and perspectives Enhancing heat recovery efficiency in chimney exhaust systems using thermoelectric generators – Thermal modeling and parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1