Jimmy K Kabeya, Nadège K Ngombe, Paulin K Mutwale, Justin B Safari, Gauta Gold Matlou, Rui W M Krause, Christian I Nkanga
{"title":"Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste.","authors":"Jimmy K Kabeya, Nadège K Ngombe, Paulin K Mutwale, Justin B Safari, Gauta Gold Matlou, Rui W M Krause, Christian I Nkanga","doi":"10.1080/21691401.2025.2462335","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we investigated the phytochemical composition and antibacterial activities of the organic layers from biosynthesized silver nanoparticles (AgNPs). AgNPs were synthesized using <i>Musa paradisiaca</i> and <i>Musa sapientum</i> extracts. UV-vis absorption in the 400-450 nm range indicated surface plasmonic resonance peak of AgNPs. Samples analyses using dynamic light scattering and transmission electron microscopy revealed the presence of particles within nanometric ranges, with sizes of 30-140 nm and 8-40 nm, respectively. Fourier transform infrared (FTIR) unveiled the presence of several organic functional groups on the surface of AgNPs, indicating the presence of phytochemicals from plant extracts. Thin layer chromatography (TLC) of the phytochemicals (capping agents) from AgNPs identified multiple groups of secondary metabolites. These phytochemical capping agents exhibited antibacterial activities against <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Pseudomonas aeruginosa</i>, with minimum inhibitory concentrations ranging from 62.5 to 1000 µg/mL. Regardless of the bacterial species or plant parts (leaves or pseudo-stems), capping agents from <i>M. sapientum</i> nanoparticles displayed significantly enhanced antibacterial effectiveness compared to all other samples, including the raw plant extracts and biosynthesized capped and uncapped AgNPs. These results suggest the presence of antimicrobial phytochemicals on biosynthesized AgNPs, highlighting the promise of green nanoparticle synthesis as a valuable approach in bioprospecting antimicrobial agents.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"29-42"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2462335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we investigated the phytochemical composition and antibacterial activities of the organic layers from biosynthesized silver nanoparticles (AgNPs). AgNPs were synthesized using Musa paradisiaca and Musa sapientum extracts. UV-vis absorption in the 400-450 nm range indicated surface plasmonic resonance peak of AgNPs. Samples analyses using dynamic light scattering and transmission electron microscopy revealed the presence of particles within nanometric ranges, with sizes of 30-140 nm and 8-40 nm, respectively. Fourier transform infrared (FTIR) unveiled the presence of several organic functional groups on the surface of AgNPs, indicating the presence of phytochemicals from plant extracts. Thin layer chromatography (TLC) of the phytochemicals (capping agents) from AgNPs identified multiple groups of secondary metabolites. These phytochemical capping agents exhibited antibacterial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with minimum inhibitory concentrations ranging from 62.5 to 1000 µg/mL. Regardless of the bacterial species or plant parts (leaves or pseudo-stems), capping agents from M. sapientum nanoparticles displayed significantly enhanced antibacterial effectiveness compared to all other samples, including the raw plant extracts and biosynthesized capped and uncapped AgNPs. These results suggest the presence of antimicrobial phytochemicals on biosynthesized AgNPs, highlighting the promise of green nanoparticle synthesis as a valuable approach in bioprospecting antimicrobial agents.
期刊介绍:
Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.