In situ Forming Nanoemulgel for Diabetic Retinopathy: Development, characterization, and in vitro efficacy assessment.

IF 1.7 Q3 PHARMACOLOGY & PHARMACY Drug Research Pub Date : 2025-02-07 DOI:10.1055/a-2517-4967
Soumya Singh, Poonam Kushwaha, Sujeet Gupta
{"title":"In situ Forming Nanoemulgel for Diabetic Retinopathy: Development, characterization, and in vitro efficacy assessment.","authors":"Soumya Singh, Poonam Kushwaha, Sujeet Gupta","doi":"10.1055/a-2517-4967","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy, the most common microvascular complication of diabetes mellitus, is the leading cause of vision impairment worldwide. Flavonoids with antioxidant properties have been shown to slow its progression. Myricetin, a flavonoid polyphenolic compound, possesses antioxidant properties, but its clinical use in ocular delivery is limited by poor aqueous solubility, stability, and bioavailability. Recently, in situ gels have gained interest as ocular drug delivery vehicles due to their ease of installation and sustained drug release. This study aimed to develop a myricetin-loaded thermoresponsive in situ nanoemulgel to enhance its efficacy in treating diabetic retinopathy. Nanoemulsions were developed via aqueous phase titration using Sefsol 218 as the oil phase, Kolliphore RH40 as the surfactant, and PEG 400 as the co-surfactant. Physicochemical evaluations identified formulation batch ISG17, consisting of 10% oil phase, 30% S<sub>mix</sub> (1:2), and 60% distilled water, as the optimal formulation. The developed in situ nanoemulgel showed significant enhancement in corneal permeation and retention, which was further confirmed by fluorescence microscopy. Ocular tolerability was demonstrated through corneal hydration tests and histopathology investigations. The antioxidant potential of the myricetin-loaded nanoemulgel was assessed using the DPPH assay. Myricetin was found to be an efficient antioxidant, as indicated by its IC<sub>50</sub> values compared to ascorbic acid. The MTT cell viability assay results showed that the developed formulation effectively inhibits the proliferation of Y79 retinoblastoma cells, demonstrating comparable efficacy to the standard marketed preparation Avastin (Bevacizumab injection). In conclusion, the nanoemulsion formulation containing a thermoresponsive polymer for in situ gelling presents a promising drug delivery system, offering superior therapeutic efficacy and better patient compliance for the treatment of diabetic retinopathy.</p>","PeriodicalId":11451,"journal":{"name":"Drug Research","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2517-4967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic retinopathy, the most common microvascular complication of diabetes mellitus, is the leading cause of vision impairment worldwide. Flavonoids with antioxidant properties have been shown to slow its progression. Myricetin, a flavonoid polyphenolic compound, possesses antioxidant properties, but its clinical use in ocular delivery is limited by poor aqueous solubility, stability, and bioavailability. Recently, in situ gels have gained interest as ocular drug delivery vehicles due to their ease of installation and sustained drug release. This study aimed to develop a myricetin-loaded thermoresponsive in situ nanoemulgel to enhance its efficacy in treating diabetic retinopathy. Nanoemulsions were developed via aqueous phase titration using Sefsol 218 as the oil phase, Kolliphore RH40 as the surfactant, and PEG 400 as the co-surfactant. Physicochemical evaluations identified formulation batch ISG17, consisting of 10% oil phase, 30% Smix (1:2), and 60% distilled water, as the optimal formulation. The developed in situ nanoemulgel showed significant enhancement in corneal permeation and retention, which was further confirmed by fluorescence microscopy. Ocular tolerability was demonstrated through corneal hydration tests and histopathology investigations. The antioxidant potential of the myricetin-loaded nanoemulgel was assessed using the DPPH assay. Myricetin was found to be an efficient antioxidant, as indicated by its IC50 values compared to ascorbic acid. The MTT cell viability assay results showed that the developed formulation effectively inhibits the proliferation of Y79 retinoblastoma cells, demonstrating comparable efficacy to the standard marketed preparation Avastin (Bevacizumab injection). In conclusion, the nanoemulsion formulation containing a thermoresponsive polymer for in situ gelling presents a promising drug delivery system, offering superior therapeutic efficacy and better patient compliance for the treatment of diabetic retinopathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Research
Drug Research PHARMACOLOGY & PHARMACY-
CiteScore
3.50
自引率
0.00%
发文量
67
期刊介绍: Drug Research (formerly Arzneimittelforschung) is an international peer-reviewed journal with expedited processing times presenting the very latest research results related to novel and established drug molecules and the evaluation of new drug development. A key focus of the publication is translational medicine and the application of biological discoveries in the development of drugs for use in the clinical environment. Articles and experimental data from across the field of drug research address not only the issue of drug discovery, but also the mathematical and statistical methods for evaluating results from industrial investigations and clinical trials. Publishing twelve times a year, Drug Research includes original research articles as well as reviews, commentaries and short communications in the following areas: analytics applied to clinical trials chemistry and biochemistry clinical and experimental pharmacology drug interactions efficacy testing pharmacodynamics pharmacokinetics teratology toxicology.
期刊最新文献
In situ Forming Nanoemulgel for Diabetic Retinopathy: Development, characterization, and in vitro efficacy assessment. Repeated injections of isovaline lead to analgesic tolerance and cross-tolerance to salicylate but not to morphine in male mice. WEE1 Inhibition by AZD1775 Augments Colorectal Cancer Cells Susceptibility to VE-822-induced DNA Damage and Apoptosis. Thymoquinone Mediates Müller Cell Apoptosis via miR-29b/SP1 Pathway: A Potential Therapeutic Approach in Diabetic Retinopathy. A Review of Potentials of Carica Papaya Leaves in Dengue Viral Infection - Insights of Clinical and Preclinical Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1