Spatiotemporal Clustering of Functional Ultrasound Signals at the Single-Voxel Level.

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-02-07 DOI:10.1523/ENEURO.0438-24.2025
Théo Lambert, Hamid Reza Niknejad, Dries Kil, Gabriel Montaldo, Bart Nuttin, Clément Brunner, Alan Urban
{"title":"Spatiotemporal Clustering of Functional Ultrasound Signals at the Single-Voxel Level.","authors":"Théo Lambert, Hamid Reza Niknejad, Dries Kil, Gabriel Montaldo, Bart Nuttin, Clément Brunner, Alan Urban","doi":"10.1523/ENEURO.0438-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Functional ultrasound (fUS) imaging is a well-established neuroimaging technology that offers high spatiotemporal resolution and a large field of view. Typical strategies for analysing fUS data comprise either region-based averaging, typically based on reference atlases, or correlation with experimental events. Nevertheless, these methodologies possess several inherent limitations, including a restricted utilisation of the spatial dimension and a pronounced bias influenced by preconceived notions about the recorded activity. In this study, we put forth single-voxel clustering as a third method to address these issues. A comparison was conducted between the three strategies on a typical dataset comprising visually evoked activity in the superior colliculus in awake mice. The application of single-voxel clustering yielded the generation of detailed activity maps, which revealed a consistent layout of activity and a clear separation between haemodynamic responses. This method is best considered as a complement to region-based averaging and correlation. It has direct applicability to challenging contexts, such as paradigm-free analysis on behaving subjects and brain decoding.<b>Significance Statement</b> The application of spatiotemporal clustering at single-voxel resolution for functional ultrasound (fUS) signal analysis significantly enhances sensitivity in comparison to conventional methods, such as region-based averaging or event correlation. Conventional approaches frequently rely on predefined atlases or specific experimental conditions, which inherently restrict spatiotemporal resolution. In contrast, single-voxel clustering optimises the potential of fUS, facilitating the detection of intricate activity patterns throughout the brain without the necessity for prior assumptions. This approach enables more precise differentiation of hemodynamic responses and more reliable activity mapping. It is particularly advantageous in complex or paradigm-free studies, offering a high-resolution alternative to standard techniques.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0438-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Functional ultrasound (fUS) imaging is a well-established neuroimaging technology that offers high spatiotemporal resolution and a large field of view. Typical strategies for analysing fUS data comprise either region-based averaging, typically based on reference atlases, or correlation with experimental events. Nevertheless, these methodologies possess several inherent limitations, including a restricted utilisation of the spatial dimension and a pronounced bias influenced by preconceived notions about the recorded activity. In this study, we put forth single-voxel clustering as a third method to address these issues. A comparison was conducted between the three strategies on a typical dataset comprising visually evoked activity in the superior colliculus in awake mice. The application of single-voxel clustering yielded the generation of detailed activity maps, which revealed a consistent layout of activity and a clear separation between haemodynamic responses. This method is best considered as a complement to region-based averaging and correlation. It has direct applicability to challenging contexts, such as paradigm-free analysis on behaving subjects and brain decoding.Significance Statement The application of spatiotemporal clustering at single-voxel resolution for functional ultrasound (fUS) signal analysis significantly enhances sensitivity in comparison to conventional methods, such as region-based averaging or event correlation. Conventional approaches frequently rely on predefined atlases or specific experimental conditions, which inherently restrict spatiotemporal resolution. In contrast, single-voxel clustering optimises the potential of fUS, facilitating the detection of intricate activity patterns throughout the brain without the necessity for prior assumptions. This approach enables more precise differentiation of hemodynamic responses and more reliable activity mapping. It is particularly advantageous in complex or paradigm-free studies, offering a high-resolution alternative to standard techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Spatial Heterogeneity in Myelin Sheathing Impacts Signaling Reliability and Susceptibility to Injury. Temporal Lobectomy Evidence for the Role of the Amygdala in Early Emotional Face and Body Processing. Neuronal Properties in the Lateral Habenula and Adult-Newborn Interactions in Virgin Female and Male Mice. Decoding Visual Spatial Attention Control. Cholecystokinin modulates corticostriatal transmission and plasticity in rodents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1