Andrew Boon Huat Goh, Jonathan Guyang Ling, Shazilah Kamaruddin, Abdul Munir Abdul Murad, Farah Diba Abu Bakar
{"title":"Identification and expression of a hydrophobic carboxylic acid reductase from Trichoderma virens.","authors":"Andrew Boon Huat Goh, Jonathan Guyang Ling, Shazilah Kamaruddin, Abdul Munir Abdul Murad, Farah Diba Abu Bakar","doi":"10.1093/femsle/fnaf021","DOIUrl":null,"url":null,"abstract":"<p><p>Carboxylic acid reductases (CARs) have been garnering attention in applications for the sustainable synthesis of aldehydes. Despite numerous discoveries, not all characteristics of CAR enzymes have been extensively studied or understood. Herein, we report the discovery and expression of a new CAR enzyme (TvirCAR2) from the ascomycetous fungus, Trichoderma virens. Tvircar2 is one of five putative CARs identified from analyses of the T. virens genome. In silico analyses showed that TvirCAR2 has a high hydrophobicity index and that its corresponding gene is part of a biosynthetic gene cluster predicted to synthesize hybrid PKS-NRPS secondary metabolites. TvirCAR2 was highly expressed as soluble and insoluble forms in an Escherichia coli expression host. The solubility of the purified TvirCAR2 necessitated the addition of glycerol in the purification and assay buffers. Substrate screening via molecular docking showed that benzoic acid was a suitable substrate candidate. The TvirCAR2 enzyme catalyzed the reduction of benzoic acid with a specific activity of around 1.4 µmol/h/mg. Homologs which are predicted to exhibit similar hydrophobicity are the CARs from Stachybotrys bisbyi (StbB) which is involved in the production of the meroterpenoid, ilicicolin B, and Trichoderma reesei (TrCAR) which is part of a similar but still uncharacterized biosynthetic gene cluster.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf021","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carboxylic acid reductases (CARs) have been garnering attention in applications for the sustainable synthesis of aldehydes. Despite numerous discoveries, not all characteristics of CAR enzymes have been extensively studied or understood. Herein, we report the discovery and expression of a new CAR enzyme (TvirCAR2) from the ascomycetous fungus, Trichoderma virens. Tvircar2 is one of five putative CARs identified from analyses of the T. virens genome. In silico analyses showed that TvirCAR2 has a high hydrophobicity index and that its corresponding gene is part of a biosynthetic gene cluster predicted to synthesize hybrid PKS-NRPS secondary metabolites. TvirCAR2 was highly expressed as soluble and insoluble forms in an Escherichia coli expression host. The solubility of the purified TvirCAR2 necessitated the addition of glycerol in the purification and assay buffers. Substrate screening via molecular docking showed that benzoic acid was a suitable substrate candidate. The TvirCAR2 enzyme catalyzed the reduction of benzoic acid with a specific activity of around 1.4 µmol/h/mg. Homologs which are predicted to exhibit similar hydrophobicity are the CARs from Stachybotrys bisbyi (StbB) which is involved in the production of the meroterpenoid, ilicicolin B, and Trichoderma reesei (TrCAR) which is part of a similar but still uncharacterized biosynthetic gene cluster.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.