Bacterial community assembly of specific pathogen-free neonatal mice.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY Microbiome Pub Date : 2025-02-07 DOI:10.1186/s40168-025-02043-8
Elizabeth A Kennedy, James S Weagley, Andrew H Kim, Avan Antia, Anna L DeVeaux, Megan T Baldridge
{"title":"Bacterial community assembly of specific pathogen-free neonatal mice.","authors":"Elizabeth A Kennedy, James S Weagley, Andrew H Kim, Avan Antia, Anna L DeVeaux, Megan T Baldridge","doi":"10.1186/s40168-025-02043-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized. We address this gap by characterizing the assembly of the bacterial microbiota of C57BL/6 and BALB/c litters from birth to adulthood across multiple independent litters.</p><p><strong>Results: </strong>The fecal microbiome of young pups is dominated by only a few pioneering bacterial taxa. These taxa are present at low levels in the microbiota of multiple maternal body sites, precluding a clear identification of maternal source. The pup microbiota begins diversifying after 14 days, coinciding with the beginning of coprophagy and the consumption of solid foods. Pup stool bacterial community composition and diversity are not significantly different from dams from day 21 onwards. Short-read shotgun sequencing-based metagenomic profiling of young pups enabled the assembly of metagenome-assembled genomes for strain-level analysis of these pioneer Ligilactobacillus, Streptococcus, and Proteus species.</p><p><strong>Conclusions: </strong>Assembly of the murine microbiome occurs over the first weeks of postnatal life and is largely complete by day 21. This detailed view of bacterial community development across multiple commonly employed mouse strains informs experimental design, allowing researchers to better target interventions before, during, or after the maturation of the bacterial microbiota. The source of pioneer bacterial strains appears heterogeneous, as the most abundant taxa identified in young pup stool were found at low levels across multiple maternal body sites, suggesting diverse routes for seeding of the murine microbiome. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"46"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02043-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neonatal mice are frequently used to model diseases that affect human infants. Microbial community composition has been shown to impact disease progression in these models. Despite this, the maturation of the early-life murine microbiome has not been well-characterized. We address this gap by characterizing the assembly of the bacterial microbiota of C57BL/6 and BALB/c litters from birth to adulthood across multiple independent litters.

Results: The fecal microbiome of young pups is dominated by only a few pioneering bacterial taxa. These taxa are present at low levels in the microbiota of multiple maternal body sites, precluding a clear identification of maternal source. The pup microbiota begins diversifying after 14 days, coinciding with the beginning of coprophagy and the consumption of solid foods. Pup stool bacterial community composition and diversity are not significantly different from dams from day 21 onwards. Short-read shotgun sequencing-based metagenomic profiling of young pups enabled the assembly of metagenome-assembled genomes for strain-level analysis of these pioneer Ligilactobacillus, Streptococcus, and Proteus species.

Conclusions: Assembly of the murine microbiome occurs over the first weeks of postnatal life and is largely complete by day 21. This detailed view of bacterial community development across multiple commonly employed mouse strains informs experimental design, allowing researchers to better target interventions before, during, or after the maturation of the bacterial microbiota. The source of pioneer bacterial strains appears heterogeneous, as the most abundant taxa identified in young pup stool were found at low levels across multiple maternal body sites, suggesting diverse routes for seeding of the murine microbiome. Video Abstract.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
期刊最新文献
Antibiotic-associated changes in Akkermansia muciniphila alter its effects on host metabolic health. Bacterial community assembly of specific pathogen-free neonatal mice. Correction: An integrated microbiome- and metabolome-genome-wide association study reveals the role of heritable ruminal microbial carbohydrate metabolism in lactation performance in Holstein dairy cows. Fecal microbiota transplantation modulates jejunal host-microbiota interface in weanling piglets. Modulating the developing gut microbiota with 2'-fucosyllactose and pooled human milk oligosaccharides.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1