Advanced retinal disease detection from OCT images using a hybrid squeeze and excitation enhanced model.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0318657
Gülcan Gencer, Kerem Gencer
{"title":"Advanced retinal disease detection from OCT images using a hybrid squeeze and excitation enhanced model.","authors":"Gülcan Gencer, Kerem Gencer","doi":"10.1371/journal.pone.0318657","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Retinal problems are critical because they can cause severe vision loss if not treated. Traditional methods for diagnosing retinal disorders often rely heavily on manual interpretation of optical coherence tomography (OCT) images, which can be time-consuming and dependent on the expertise of ophthalmologists. This leads to challenges in early diagnosis, especially as retinal diseases like diabetic macular edema (DME), Drusen, and Choroidal neovascularization (CNV) become more prevalent. OCT helps ophthalmologists diagnose patients more accurately by allowing for early detection. This paper offers a hybrid SE (Squeeze-and-Excitation)-Enhanced Hybrid Model for detecting retinal disorders from OCT images, including DME, Drusen, and CNV, using artificial intelligence and deep learning.</p><p><strong>Methods: </strong>The model integrates SE blocks with EfficientNetB0 and Xception architectures, which provide high success in image classification tasks. EfficientNetB0 achieves high accuracy with fewer parameters through model scaling strategies, while Xception offers powerful feature extraction using deep separable convolutions. The combination of these architectures enhances both the efficiency and classification performance of the model, enabling more accurate detection of retinal disorders from OCT images. Additionally, SE blocks increase the representational ability of the network by adaptively recalibrating per-channel feature responses.</p><p><strong>Results: </strong>The combined features from EfficientNetB0 and Xception are processed via fully connected layers and categorized using the Softmax algorithm. The methodology was tested on UCSD and Duke's OCT datasets and produced excellent results. The proposed SE-Improved Hybrid Model outperformed the current best-known approaches, with accuracy rates of 99.58% on the UCSD dataset and 99.18% on the Duke dataset.</p><p><strong>Conclusion: </strong>These findings emphasize the model's ability to effectively diagnose retinal disorders using OCT images and indicate substantial promise for the development of computer-aided diagnostic tools in the field of ophthalmology.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0318657"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0318657","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Retinal problems are critical because they can cause severe vision loss if not treated. Traditional methods for diagnosing retinal disorders often rely heavily on manual interpretation of optical coherence tomography (OCT) images, which can be time-consuming and dependent on the expertise of ophthalmologists. This leads to challenges in early diagnosis, especially as retinal diseases like diabetic macular edema (DME), Drusen, and Choroidal neovascularization (CNV) become more prevalent. OCT helps ophthalmologists diagnose patients more accurately by allowing for early detection. This paper offers a hybrid SE (Squeeze-and-Excitation)-Enhanced Hybrid Model for detecting retinal disorders from OCT images, including DME, Drusen, and CNV, using artificial intelligence and deep learning.

Methods: The model integrates SE blocks with EfficientNetB0 and Xception architectures, which provide high success in image classification tasks. EfficientNetB0 achieves high accuracy with fewer parameters through model scaling strategies, while Xception offers powerful feature extraction using deep separable convolutions. The combination of these architectures enhances both the efficiency and classification performance of the model, enabling more accurate detection of retinal disorders from OCT images. Additionally, SE blocks increase the representational ability of the network by adaptively recalibrating per-channel feature responses.

Results: The combined features from EfficientNetB0 and Xception are processed via fully connected layers and categorized using the Softmax algorithm. The methodology was tested on UCSD and Duke's OCT datasets and produced excellent results. The proposed SE-Improved Hybrid Model outperformed the current best-known approaches, with accuracy rates of 99.58% on the UCSD dataset and 99.18% on the Duke dataset.

Conclusion: These findings emphasize the model's ability to effectively diagnose retinal disorders using OCT images and indicate substantial promise for the development of computer-aided diagnostic tools in the field of ophthalmology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
Direct detection and identification of viruses in saliva using a SpecID ionization modified mass spectrometer. Orthogonally polarized dual-wavelength Nd:GdVO4/Nd:YVO4 laser at 1341 and 1342 nm with adjustable power ratio. Does the social credit system construction reduce enterprises' overinvestment? quasi-natural experimental evidence from China. Perceived barriers to physical activity and their predictors among adults in the Central Region in Saudi Arabia: Gender differences and cultural aspects. Perivascular space imaging during therapy for medulloblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1