Chunran Xue, Haojun Yu, Xuzhong Pei, Xiaoying Yao, Jie Ding, Xiying Wang, Yi Chen, Yangtai Guan
{"title":"Efficacy of human umbilical cord mesenchymal stem cell in the treatment of neuromyelitis optica spectrum disorders: an animal study.","authors":"Chunran Xue, Haojun Yu, Xuzhong Pei, Xiaoying Yao, Jie Ding, Xiying Wang, Yi Chen, Yangtai Guan","doi":"10.1186/s13287-025-04187-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential for treating autoimmune diseases for their immunomodulatory and tissue-regenerative abilities; however, their therapeutic role in neuromyelitis optica spectrum disorder (NMOSD) remains uncertain.</p><p><strong>Methods: </strong>10<sup>6</sup> hUC-MSCs prepared in 200 μl PBS were intravenously administered to a systemic NMOSD model on day 10 and day 14 after immunization. Then, disease progression, immune responses, and blood-brain barrier integrity were evaluated. Additionally, we tested the effects of hUC-MSCs on astrocyte viability and apoptosis using an aquaporin 4 (AQP4) IgG and complement-induced cytotoxicity model in vitro.</p><p><strong>Results: </strong>hUC-MSCs alleviated NMOSD progression in vivo with improved motor function, reduced inflammatory infiltration, myelin loss, and preservation of astrocytes and neurons. hUC-MSC treatment did not affect autoimmune reactions in the spleen, however, decreased cytokine release in the spinal cord and mitigated blood-brain barrier disruption. Furthermore, in vitro studies revealed that co-culture with hUC-MSCs significantly restored astrocyte viability and reduced apoptosis in AQP4 IgG and complement-mediated damage.</p><p><strong>Conclusion: </strong>Our results revealed that hUC-MSCs displayed therapeutic efficacy in NMOSD and showed potential in attenuating blood-brain barrier disruption, as well as AQP4 IgG and complement-induced astrocyte apoptosis.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"51"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04187-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Human umbilical cord mesenchymal stem cells (hUC-MSCs) have great potential for treating autoimmune diseases for their immunomodulatory and tissue-regenerative abilities; however, their therapeutic role in neuromyelitis optica spectrum disorder (NMOSD) remains uncertain.
Methods: 106 hUC-MSCs prepared in 200 μl PBS were intravenously administered to a systemic NMOSD model on day 10 and day 14 after immunization. Then, disease progression, immune responses, and blood-brain barrier integrity were evaluated. Additionally, we tested the effects of hUC-MSCs on astrocyte viability and apoptosis using an aquaporin 4 (AQP4) IgG and complement-induced cytotoxicity model in vitro.
Results: hUC-MSCs alleviated NMOSD progression in vivo with improved motor function, reduced inflammatory infiltration, myelin loss, and preservation of astrocytes and neurons. hUC-MSC treatment did not affect autoimmune reactions in the spleen, however, decreased cytokine release in the spinal cord and mitigated blood-brain barrier disruption. Furthermore, in vitro studies revealed that co-culture with hUC-MSCs significantly restored astrocyte viability and reduced apoptosis in AQP4 IgG and complement-mediated damage.
Conclusion: Our results revealed that hUC-MSCs displayed therapeutic efficacy in NMOSD and showed potential in attenuating blood-brain barrier disruption, as well as AQP4 IgG and complement-induced astrocyte apoptosis.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.