Complex regulation of Cav2.2 N-type Ca2+ channels by Ca2+ and G-proteins.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES PLoS ONE Pub Date : 2025-02-07 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0314839
Jessica R Thomas, Jinglang Sun, Juan De la Rosa Vazquez, Amy Lee
{"title":"Complex regulation of Cav2.2 N-type Ca2+ channels by Ca2+ and G-proteins.","authors":"Jessica R Thomas, Jinglang Sun, Juan De la Rosa Vazquez, Amy Lee","doi":"10.1371/journal.pone.0314839","DOIUrl":null,"url":null,"abstract":"<p><p>G-protein coupled receptors inhibit Cav2.2 N-type Ca2+ channels by a fast, voltage-dependent pathway mediated by Gαi/Gβγ and a slow, voltage-independent pathway mediated by Gαq-dependent reductions in phosphatidylinositol 4,5-bisphosphate (PIP2) or increases in arachidonic acid. Studies of these forms of regulation generally employ Ba2+ as the permeant ion, despite that Ca2+ -dependent pathways may impinge upon G-protein modulation. To address this possibility, we compared tonic G-protein inhibition of currents carried by Ba2+ (IBa) and Ca2+ (ICa) in HEK293T cells transfected with Cav2.2. Both IBa and ICa exhibited voltage-dependent facilitation (VDF), consistent with Gβγ unbinding from the channel. Compared to that for IBa, VDF of ICa was less sensitive to an inhibitor of Gα proteins (GDP-β-S) and an inhibitor of Gβγ (C-terminal construct of G-protein coupled receptor kinase 2). While insensitive to high intracellular Ca2+ buffering, VDF of ICa that remained in GDP-β-S was blunted by reductions in PIP2. We propose that when G-proteins are inhibited, Ca2+ influx through Cav2.2 promotes a form of VDF that involves PIP2. Our results highlight the complexity whereby Cav2.2 channels integrate G-protein signaling pathways, which may enrich the information encoding potential of chemical synapses in the nervous system.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 2","pages":"e0314839"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805433/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314839","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

G-protein coupled receptors inhibit Cav2.2 N-type Ca2+ channels by a fast, voltage-dependent pathway mediated by Gαi/Gβγ and a slow, voltage-independent pathway mediated by Gαq-dependent reductions in phosphatidylinositol 4,5-bisphosphate (PIP2) or increases in arachidonic acid. Studies of these forms of regulation generally employ Ba2+ as the permeant ion, despite that Ca2+ -dependent pathways may impinge upon G-protein modulation. To address this possibility, we compared tonic G-protein inhibition of currents carried by Ba2+ (IBa) and Ca2+ (ICa) in HEK293T cells transfected with Cav2.2. Both IBa and ICa exhibited voltage-dependent facilitation (VDF), consistent with Gβγ unbinding from the channel. Compared to that for IBa, VDF of ICa was less sensitive to an inhibitor of Gα proteins (GDP-β-S) and an inhibitor of Gβγ (C-terminal construct of G-protein coupled receptor kinase 2). While insensitive to high intracellular Ca2+ buffering, VDF of ICa that remained in GDP-β-S was blunted by reductions in PIP2. We propose that when G-proteins are inhibited, Ca2+ influx through Cav2.2 promotes a form of VDF that involves PIP2. Our results highlight the complexity whereby Cav2.2 channels integrate G-protein signaling pathways, which may enrich the information encoding potential of chemical synapses in the nervous system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
期刊最新文献
Bioactivity assessment of peptides derived from salted jellyfish (Rhopilema hispidum) byproducts. The association between different insulin resistance indexes and bone health in the elderly. Childhood brain morphometry in children with persistent stunting and catch-up growth. Comparative analysis of VMAT plans on Halcyon and infinity for lung cancer radiotherapy. The effect of nursing shared governance educational program on nurse managers' knowledge for sustainable nursing excellence and empowerment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1