Shaobing Li, Ruxin Hu, Huiming Yan, Lijun Chu, Yuying Qiu, Ying Gao, Meijuan Li, Jie Li
{"title":"Neurophysiological Markers of Auditory Verbal Hallucinations in Patients with Schizophrenia: An EEG Microstates Study.","authors":"Shaobing Li, Ruxin Hu, Huiming Yan, Lijun Chu, Yuying Qiu, Ying Gao, Meijuan Li, Jie Li","doi":"10.1007/s10548-025-01105-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alterations in the temporal characteristics of EEG microstates in patients with schizophrenia (SCZ) have been repeatedly found in previous studies. Nevertheless, altered temporal characteristics of EEG microstates in auditory verbal hallucinations (AVHs) SCZ are still unknown. This study aimed to investigate whether SCZ patients with sAVHs exhibit abnormal EEG microstates. We analyzed high-density electroencephalography data that from 79 SCZ patients, including 38 severe AVHs patients (sAVH group), 17 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Microstates were compared between three groups. Microstate C exhibited significant differences in duration and coverage and microstate B exhibited significant differences in occurrence between patients with sAVHs and without AVHs. There was a significant negative correlation between the coverage in microstate C and the severity of sAVH. Microstate C in duration, microstate B in occurrence were efficient in detecting sAVH patients. The decreased class C microstates in duration and coverage and increased class B microstates in occurrence may contribute to the severity of symptoms in AVH patients. Furthermore, we have identified that microstates C could serve as potential neurophysiological markers for detecting AVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of AVHs.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"29"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01105-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alterations in the temporal characteristics of EEG microstates in patients with schizophrenia (SCZ) have been repeatedly found in previous studies. Nevertheless, altered temporal characteristics of EEG microstates in auditory verbal hallucinations (AVHs) SCZ are still unknown. This study aimed to investigate whether SCZ patients with sAVHs exhibit abnormal EEG microstates. We analyzed high-density electroencephalography data that from 79 SCZ patients, including 38 severe AVHs patients (sAVH group), 17 moderate auditory verbal hallucinations patients (mid-AVH group), and 24 without auditory verbal hallucinations patients (non-AVH group). Microstates were compared between three groups. Microstate C exhibited significant differences in duration and coverage and microstate B exhibited significant differences in occurrence between patients with sAVHs and without AVHs. There was a significant negative correlation between the coverage in microstate C and the severity of sAVH. Microstate C in duration, microstate B in occurrence were efficient in detecting sAVH patients. The decreased class C microstates in duration and coverage and increased class B microstates in occurrence may contribute to the severity of symptoms in AVH patients. Furthermore, we have identified that microstates C could serve as potential neurophysiological markers for detecting AVHs in SCZ patients. These results can provide potential avenues for therapeutic intervention of AVHs.
期刊介绍:
Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.