{"title":"Broadband perfect Littrow diffraction metasurface under large-angle incidence","authors":"Jingyuan Zhu, Siliang Zhou, Tao He, Chao Feng, Zhanshan Wang, Siyu Dong, Xinbin Cheng","doi":"10.1515/nanoph-2024-0622","DOIUrl":null,"url":null,"abstract":"Littrow diffraction devices are commonly used in the laser field (e.g., laser resonators and spectrometers), where system integration requires larger incidence angles and perfect broadband efficiency. Compared to traditional diffraction devices, which struggle to manipulate light paths under large-angle incidence, metasurfaces has the potential to enhance the broadband efficiency. Despite quasi three-dimensional metasurfaces effects, only perfect anomalous reflection under normal incidence at limited wavelengths was achieved due to energy flow mismatch in the broadband Littrow configuration. Here, we propose a supercell metasurface capable of regulating broadband non-local responses. The metasurface effectively suppresses non-local responses under Littrow mounting, while providing sufficient non-local responses through strong structural coupling effects when the incidence deviates from the Littrow mounting. A large-angle broadband Littrow diffraction metasurface in the mid-infrared spectrum (3.11 µm ∼ 3.52 µm) has been successfully realized, with 99 % efficiency at Littrow angle of 70°. Our results break through the bandwidth limitations of perfect diffraction, providing robust support for the practical applications of metasurfaces in Littrow diffraction devices.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"21 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0622","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Littrow diffraction devices are commonly used in the laser field (e.g., laser resonators and spectrometers), where system integration requires larger incidence angles and perfect broadband efficiency. Compared to traditional diffraction devices, which struggle to manipulate light paths under large-angle incidence, metasurfaces has the potential to enhance the broadband efficiency. Despite quasi three-dimensional metasurfaces effects, only perfect anomalous reflection under normal incidence at limited wavelengths was achieved due to energy flow mismatch in the broadband Littrow configuration. Here, we propose a supercell metasurface capable of regulating broadband non-local responses. The metasurface effectively suppresses non-local responses under Littrow mounting, while providing sufficient non-local responses through strong structural coupling effects when the incidence deviates from the Littrow mounting. A large-angle broadband Littrow diffraction metasurface in the mid-infrared spectrum (3.11 µm ∼ 3.52 µm) has been successfully realized, with 99 % efficiency at Littrow angle of 70°. Our results break through the bandwidth limitations of perfect diffraction, providing robust support for the practical applications of metasurfaces in Littrow diffraction devices.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.