Deep Learning Based Image Aesthetic Quality Assessment- A Review

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2025-02-08 DOI:10.1145/3716820
Maedeh Daryanavard Chounchenani, Asadollah Shahbahrami, Reza Hassanpour, Georgi Gaydadjiev
{"title":"Deep Learning Based Image Aesthetic Quality Assessment- A Review","authors":"Maedeh Daryanavard Chounchenani, Asadollah Shahbahrami, Reza Hassanpour, Georgi Gaydadjiev","doi":"10.1145/3716820","DOIUrl":null,"url":null,"abstract":"Image Aesthetic Quality Assessment (IAQA) spans applications such as the fashion industry, AI-generated content, product design, and e-commerce. Recent deep learning advancements have been employed to evaluate image aesthetic quality. A few surveys have been conducted on IAQA models; however, details of recent deep learning models and challenges have not been fully mentioned. This paper aims to fill these gaps by providing a review of deep learning IAQA over the past decade, based on input, process, and output phases. Methodologies for deep learning-based IAQA can be categorized into general and task-specific approaches, depending on the type and diversity of input images. The processing phase involves considerations related to network architecture, learning structures, and feature extraction methods. The output phase generates results such as scoring, distribution, attributes, and description. Despite achieving a maximum accuracy of 91.5%, further improvements in deep learning models are still required. Our study highlights several challenges, including adapting models for task-specific methodology, accounting for environmental factors influencing aesthetics, the lack of substantial datasets with appropriate labels, imbalanced data, preserving image aspect ratio and integrity in network architecture design, and the need for explainable AI to understand the causative factors behind aesthetic judgments.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"54 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3716820","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Image Aesthetic Quality Assessment (IAQA) spans applications such as the fashion industry, AI-generated content, product design, and e-commerce. Recent deep learning advancements have been employed to evaluate image aesthetic quality. A few surveys have been conducted on IAQA models; however, details of recent deep learning models and challenges have not been fully mentioned. This paper aims to fill these gaps by providing a review of deep learning IAQA over the past decade, based on input, process, and output phases. Methodologies for deep learning-based IAQA can be categorized into general and task-specific approaches, depending on the type and diversity of input images. The processing phase involves considerations related to network architecture, learning structures, and feature extraction methods. The output phase generates results such as scoring, distribution, attributes, and description. Despite achieving a maximum accuracy of 91.5%, further improvements in deep learning models are still required. Our study highlights several challenges, including adapting models for task-specific methodology, accounting for environmental factors influencing aesthetics, the lack of substantial datasets with appropriate labels, imbalanced data, preserving image aspect ratio and integrity in network architecture design, and the need for explainable AI to understand the causative factors behind aesthetic judgments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Deep Learning Based Image Aesthetic Quality Assessment- A Review AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways Deep Learning Library Testing: Definition, Methods and Challenges A Survey on Exploring Real and Virtual Social Network Rumors: State-of-the-Art and Research Challenges ENDEMIC: End-to-End Network Disruptions - Examining Middleboxes, Issues, and Countermeasures - A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1