Maedeh Daryanavard Chounchenani, Asadollah Shahbahrami, Reza Hassanpour, Georgi Gaydadjiev
{"title":"Deep Learning Based Image Aesthetic Quality Assessment- A Review","authors":"Maedeh Daryanavard Chounchenani, Asadollah Shahbahrami, Reza Hassanpour, Georgi Gaydadjiev","doi":"10.1145/3716820","DOIUrl":null,"url":null,"abstract":"Image Aesthetic Quality Assessment (IAQA) spans applications such as the fashion industry, AI-generated content, product design, and e-commerce. Recent deep learning advancements have been employed to evaluate image aesthetic quality. A few surveys have been conducted on IAQA models; however, details of recent deep learning models and challenges have not been fully mentioned. This paper aims to fill these gaps by providing a review of deep learning IAQA over the past decade, based on input, process, and output phases. Methodologies for deep learning-based IAQA can be categorized into general and task-specific approaches, depending on the type and diversity of input images. The processing phase involves considerations related to network architecture, learning structures, and feature extraction methods. The output phase generates results such as scoring, distribution, attributes, and description. Despite achieving a maximum accuracy of 91.5%, further improvements in deep learning models are still required. Our study highlights several challenges, including adapting models for task-specific methodology, accounting for environmental factors influencing aesthetics, the lack of substantial datasets with appropriate labels, imbalanced data, preserving image aspect ratio and integrity in network architecture design, and the need for explainable AI to understand the causative factors behind aesthetic judgments.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"54 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3716820","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Image Aesthetic Quality Assessment (IAQA) spans applications such as the fashion industry, AI-generated content, product design, and e-commerce. Recent deep learning advancements have been employed to evaluate image aesthetic quality. A few surveys have been conducted on IAQA models; however, details of recent deep learning models and challenges have not been fully mentioned. This paper aims to fill these gaps by providing a review of deep learning IAQA over the past decade, based on input, process, and output phases. Methodologies for deep learning-based IAQA can be categorized into general and task-specific approaches, depending on the type and diversity of input images. The processing phase involves considerations related to network architecture, learning structures, and feature extraction methods. The output phase generates results such as scoring, distribution, attributes, and description. Despite achieving a maximum accuracy of 91.5%, further improvements in deep learning models are still required. Our study highlights several challenges, including adapting models for task-specific methodology, accounting for environmental factors influencing aesthetics, the lack of substantial datasets with appropriate labels, imbalanced data, preserving image aspect ratio and integrity in network architecture design, and the need for explainable AI to understand the causative factors behind aesthetic judgments.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.