An updated review on green synthesized nanoparticles to control insect pests

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2025-02-09 DOI:10.1007/s10340-024-01863-1
Ramalingam Karthik Raja, Seetharaman Prabu Kumar, Govindasamy Balasubramani, Chellappa Sankaranarayanan, Bo Liu, Selcuk Hazir, Mathiyazhagan Narayanan
{"title":"An updated review on green synthesized nanoparticles to control insect pests","authors":"Ramalingam Karthik Raja, Seetharaman Prabu Kumar, Govindasamy Balasubramani, Chellappa Sankaranarayanan, Bo Liu, Selcuk Hazir, Mathiyazhagan Narayanan","doi":"10.1007/s10340-024-01863-1","DOIUrl":null,"url":null,"abstract":"<p>Excessive chemical pesticide use has had harmful implications for the environment, animals and humans. Insect resistance has substantially resulted in reduced pesticide efficiency. Global experts are striving to diminish the use of harmful pesticides for pest and pathogen control by adopting eco-friendly methods. Nanotechnology, a recent breakthrough, holds significant promise in addressing these challenges and providing safer environmental alternatives. Nanotechnology applications in sustainable agriculture have tremendous potential in insect pest management with controlled and targeted release mechanisms as smaller sizes of the nanoparticles ensure the proper spread on the pest surface, which results in better action. Biological synthesis of these nanoparticles from plant parts and microorganisms is a valuable alternative to chemical approaches. Nanotechnology is used in formulating nano-based pesticides such as nanosuspensions, nanocapsules and nanoclays. In addition, some nanoparticles are used as pesticides alone. This review covers the significance of bio-nano-insecticides, their synthesis, and formulations as modern pesticides. Additionally, it highlights the previously less-explored impact of nanoparticles on mosquito larvae. The study also encompasses nanopesticide formulation, delivery, mode of action, and effects on non-target species. Furthermore, difficulties and limitations must be resolved and investigated in order to evaluate the laboratory results of nanoparticle application for commercialization. This review also discusses the challenges and limitations hindering the commercialization of nanoparticle applications in insect control. Addressing these challenges is essential to ensure the successful translation of laboratory results into practical and effective pest management solutions.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"79 3 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01863-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive chemical pesticide use has had harmful implications for the environment, animals and humans. Insect resistance has substantially resulted in reduced pesticide efficiency. Global experts are striving to diminish the use of harmful pesticides for pest and pathogen control by adopting eco-friendly methods. Nanotechnology, a recent breakthrough, holds significant promise in addressing these challenges and providing safer environmental alternatives. Nanotechnology applications in sustainable agriculture have tremendous potential in insect pest management with controlled and targeted release mechanisms as smaller sizes of the nanoparticles ensure the proper spread on the pest surface, which results in better action. Biological synthesis of these nanoparticles from plant parts and microorganisms is a valuable alternative to chemical approaches. Nanotechnology is used in formulating nano-based pesticides such as nanosuspensions, nanocapsules and nanoclays. In addition, some nanoparticles are used as pesticides alone. This review covers the significance of bio-nano-insecticides, their synthesis, and formulations as modern pesticides. Additionally, it highlights the previously less-explored impact of nanoparticles on mosquito larvae. The study also encompasses nanopesticide formulation, delivery, mode of action, and effects on non-target species. Furthermore, difficulties and limitations must be resolved and investigated in order to evaluate the laboratory results of nanoparticle application for commercialization. This review also discusses the challenges and limitations hindering the commercialization of nanoparticle applications in insect control. Addressing these challenges is essential to ensure the successful translation of laboratory results into practical and effective pest management solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Comparing inward and outward strategies for delimiting non-native plant pest outbreaks Target of rapamycin (TOR) is necessary for the blood digestion and reproduction of Aedes albopictus An updated review on green synthesized nanoparticles to control insect pests First insights towards RNAi-based management of the pollen beetle Brassicogethes viridescens, with risk assessment against model non-target pollinator and biocontrol insects Palatability of insecticides and protein in sugar solutions to Argentine ants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1