Nanoplastics enhance tebuconazole toxicity in lettuce by promoting its accumulation and disrupting phenylalanine metabolism: Importance of Trojan horse effect
{"title":"Nanoplastics enhance tebuconazole toxicity in lettuce by promoting its accumulation and disrupting phenylalanine metabolism: Importance of Trojan horse effect","authors":"Yabo Liang, Xueke Liu, Jiangong Jiang, Wangjing Zhai, Qiqi Guo, Haoming Guo, Shouchun Xiao, Feng Ling, Zhiqiang Zhou, Donghui Liu, Peng Wang","doi":"10.1016/j.jhazmat.2025.137538","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoplastics (NPs) are ubiquitous in agricultural environments and may exacerbate environmental risks of pesticides. This study investigates how NPs influence the toxicity of tebuconazole in lettuce. In a hydroponic model, NPs (10 and 50 mg/L) enhanced tebuconazole accumulation in roots and exacerbated its toxicity. To elucidate the underlying mechanisms, a combination of in vivo, in vitro, and in silico models was employed. The results indicated that NPs were taken up by roots through apoplast pathway, predominantly accumulating in roots (35.6–40.7 %) due to aggregation in root sap and adhesion to cell wall. Tebuconazole adsorbs onto NPs with a high adsorption capacity (123.7 mg/g), enabling NPs to serve as carriers that facilitate tebuconazole entry into roots. Once in the root sap, tebuconazole desorbed from NPs and accumulated in cell walls, leading to higher residue in the roots (7.19–9.85 mg/kg). Furthermore, tebuconazole bound to key proteins involved in auxin biosynthesis (e.g., YUC) and signaling (e.g., TIR), thereby inhibiting tryptophan-dependent auxin biosynthesis pathway and disrupting TIR1/AFB-mediated auxin signaling. Additionally, tebuconazole suppressed the phenylalanine pathway, reducing antioxidant secondary metabolites such as flavonols. When NPs are present, co-exposure intensified the inhibition of auxin and phenylalanine pathways, thereby amplifying the toxicity of tebuconazole, as evidenced by impaired plant phenotypes (e.g., biomass, root tips) and disrupted antioxidant systems. This study reveals threats posed by NPs and tebuconazole in agricultural systems and highlights the novel carrier effect of NPs in enhancing tebuconazole toxicity, emphasizing the urgent need to assess the fate and toxicity of NPs and coexisting pollutants.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"489 ","pages":"Article 137538"},"PeriodicalIF":12.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425004509","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoplastics (NPs) are ubiquitous in agricultural environments and may exacerbate environmental risks of pesticides. This study investigates how NPs influence the toxicity of tebuconazole in lettuce. In a hydroponic model, NPs (10 and 50 mg/L) enhanced tebuconazole accumulation in roots and exacerbated its toxicity. To elucidate the underlying mechanisms, a combination of in vivo, in vitro, and in silico models was employed. The results indicated that NPs were taken up by roots through apoplast pathway, predominantly accumulating in roots (35.6–40.7 %) due to aggregation in root sap and adhesion to cell wall. Tebuconazole adsorbs onto NPs with a high adsorption capacity (123.7 mg/g), enabling NPs to serve as carriers that facilitate tebuconazole entry into roots. Once in the root sap, tebuconazole desorbed from NPs and accumulated in cell walls, leading to higher residue in the roots (7.19–9.85 mg/kg). Furthermore, tebuconazole bound to key proteins involved in auxin biosynthesis (e.g., YUC) and signaling (e.g., TIR), thereby inhibiting tryptophan-dependent auxin biosynthesis pathway and disrupting TIR1/AFB-mediated auxin signaling. Additionally, tebuconazole suppressed the phenylalanine pathway, reducing antioxidant secondary metabolites such as flavonols. When NPs are present, co-exposure intensified the inhibition of auxin and phenylalanine pathways, thereby amplifying the toxicity of tebuconazole, as evidenced by impaired plant phenotypes (e.g., biomass, root tips) and disrupted antioxidant systems. This study reveals threats posed by NPs and tebuconazole in agricultural systems and highlights the novel carrier effect of NPs in enhancing tebuconazole toxicity, emphasizing the urgent need to assess the fate and toxicity of NPs and coexisting pollutants.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.