Conductive supramolecular acrylate hydrogels enabled by quaternized chitosan ionic crosslinking for high-fidelity 3D printing

Lukas A. Bauman, Boxin Zhao
{"title":"Conductive supramolecular acrylate hydrogels enabled by quaternized chitosan ionic crosslinking for high-fidelity 3D printing","authors":"Lukas A. Bauman,&nbsp;Boxin Zhao","doi":"10.1016/j.carpta.2025.100702","DOIUrl":null,"url":null,"abstract":"<div><div>While 3D printing has enabled the fabrication of hydrogels with complex structures, high fidelity techniques (vat polymerization) that enable precisely engineered design of hydrogels require stiff structures to withstand the forces of printing. This is a pressing research gap in hydrogel vat-polymerization 3D printing. To address this limitation, a novel ionic crosslinker consisting of quaternized chitosan complexed with 3-sulfopropyl acrylate was used to form supramolecular 2-hydroxyethyl acrylate organogel precursors. The Cyrene organogel enhanced mechanical properties enabling the printing of high-fidelity structures; the final compliant hydrogels were then obtained through solvent exchange with water. This yielded high-fidelity 3D-printed conductive supramolecular hydrogels with tensile properties of 288±29 kPa at 516±37 % elongation and compressive properties of 572±34 kPa at 65±4 % strain with uniform swelling (320–350 %). Nuclear magnetic resonance and conductivity measurements confirmed SPA-rich blocks within the hydrogel network and the solvent-dependent copolymer structure. Furthermore, through varying the anionic acrylate concentration, ultimate strain between 222 % and 516 % was achieved at a constant elastic modulus. Additionally, electrical properties were tunable with conductivity reaching 156 mS/m at 7 MH in ultrapure water. This work advances applications of quaternized chitosan as an ionic crosslinker in printable conductive hydrogels, opening new applications in medical and technological fields.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"9 ","pages":"Article 100702"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925000416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

While 3D printing has enabled the fabrication of hydrogels with complex structures, high fidelity techniques (vat polymerization) that enable precisely engineered design of hydrogels require stiff structures to withstand the forces of printing. This is a pressing research gap in hydrogel vat-polymerization 3D printing. To address this limitation, a novel ionic crosslinker consisting of quaternized chitosan complexed with 3-sulfopropyl acrylate was used to form supramolecular 2-hydroxyethyl acrylate organogel precursors. The Cyrene organogel enhanced mechanical properties enabling the printing of high-fidelity structures; the final compliant hydrogels were then obtained through solvent exchange with water. This yielded high-fidelity 3D-printed conductive supramolecular hydrogels with tensile properties of 288±29 kPa at 516±37 % elongation and compressive properties of 572±34 kPa at 65±4 % strain with uniform swelling (320–350 %). Nuclear magnetic resonance and conductivity measurements confirmed SPA-rich blocks within the hydrogel network and the solvent-dependent copolymer structure. Furthermore, through varying the anionic acrylate concentration, ultimate strain between 222 % and 516 % was achieved at a constant elastic modulus. Additionally, electrical properties were tunable with conductivity reaching 156 mS/m at 7 MH in ultrapure water. This work advances applications of quaternized chitosan as an ionic crosslinker in printable conductive hydrogels, opening new applications in medical and technological fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Amine modified sodium alginate: Synthesis, characterization and in vivo evaluation in rainbow trout (Oncorhynchus mykiss) Conductive supramolecular acrylate hydrogels enabled by quaternized chitosan ionic crosslinking for high-fidelity 3D printing Dual targeting of breast cancer by chitosan/poly lactic-co-glycolic acid nanodelivery systems: Surface activation with folic acid/aptamers, and co-encapsulated with Sorafenib and quercetin Incorporating insulin into alginate-chitosan 3D-printed scaffolds: A comprehensive study on structure, mechanics, and biocompatibility for cartilage tissue engineering Sustainable biopolymer-based spheres for controlled release of nematodes: From development to their effects under seasonal climate variations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1