Sharjeel Ahmed Khan , Luis Vilhena , Andre Garcia , Nazanin Emami , Amilcar Ramalho
{"title":"Tribological characterization of cemented carbide tools in drilling of CFRP-Ti stacks by using modified tribometer","authors":"Sharjeel Ahmed Khan , Luis Vilhena , Andre Garcia , Nazanin Emami , Amilcar Ramalho","doi":"10.1016/j.wear.2025.205883","DOIUrl":null,"url":null,"abstract":"<div><div>Cutting tool experiences rapid variation in thrust forces and torque during drilling of carbon fiber reinforced plastic and titanium (CFRP-Ti) stacks due to distinct materials characteristics, leading to complex wear mechanism. Existing tribotests fail to emulate the multifaceted contact situation of tool interacting with multi-materials simultaneously. This work presents a cost-effective modification using hybrid CFRP-Ti split-ring in cross-cylinder configuration to replicate contact situation during the drilling operation. The results showed a high coefficient of friction (COF) of ∼0.5 against Ti6Al4V and ∼0.21 against CFRP ring. Whereas, the test against CFRP-Ti split-ring showed cyclic COF variation, driven by complex synergistic wear mechanism that completely transformed the sliding contact. The modified tribotest results provide applicable estimation of COF variation and synergistic wear mechanism correlating well with WC-Co tool wear experienced in CFRP-Ti stacks drilling.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"566 ","pages":"Article 205883"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164825001528","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cutting tool experiences rapid variation in thrust forces and torque during drilling of carbon fiber reinforced plastic and titanium (CFRP-Ti) stacks due to distinct materials characteristics, leading to complex wear mechanism. Existing tribotests fail to emulate the multifaceted contact situation of tool interacting with multi-materials simultaneously. This work presents a cost-effective modification using hybrid CFRP-Ti split-ring in cross-cylinder configuration to replicate contact situation during the drilling operation. The results showed a high coefficient of friction (COF) of ∼0.5 against Ti6Al4V and ∼0.21 against CFRP ring. Whereas, the test against CFRP-Ti split-ring showed cyclic COF variation, driven by complex synergistic wear mechanism that completely transformed the sliding contact. The modified tribotest results provide applicable estimation of COF variation and synergistic wear mechanism correlating well with WC-Co tool wear experienced in CFRP-Ti stacks drilling.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.