Transgenic mice expressing the human CDHR3 receptor: A sensitive RV-C infection model for the evaluation of vaccines and therapeutics

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Antiviral research Pub Date : 2025-02-07 DOI:10.1016/j.antiviral.2025.106102
Zhenhong Zhou , Rui Zhu , Hongwei Yang , Weixi Deng , Zijie Zhang , Yue Li , Jiaxin Xu , Ziyang Yan , Ruoxi Wang , Sijia Chang , Zhichao Yin , Yuanyuan Wu , Dongqing Zhang , Mujin Fang , Che Liu , Yuqiong Que , Jun Zhang , Ningshao Xia , Yingbin Wang , Longfa Xu , Tong Cheng
{"title":"Transgenic mice expressing the human CDHR3 receptor: A sensitive RV-C infection model for the evaluation of vaccines and therapeutics","authors":"Zhenhong Zhou ,&nbsp;Rui Zhu ,&nbsp;Hongwei Yang ,&nbsp;Weixi Deng ,&nbsp;Zijie Zhang ,&nbsp;Yue Li ,&nbsp;Jiaxin Xu ,&nbsp;Ziyang Yan ,&nbsp;Ruoxi Wang ,&nbsp;Sijia Chang ,&nbsp;Zhichao Yin ,&nbsp;Yuanyuan Wu ,&nbsp;Dongqing Zhang ,&nbsp;Mujin Fang ,&nbsp;Che Liu ,&nbsp;Yuqiong Que ,&nbsp;Jun Zhang ,&nbsp;Ningshao Xia ,&nbsp;Yingbin Wang ,&nbsp;Longfa Xu ,&nbsp;Tong Cheng","doi":"10.1016/j.antiviral.2025.106102","DOIUrl":null,"url":null,"abstract":"<div><div>Rhinovirus C (RV-C) is the primary causative agent of severe acute respiratory illnesses (ARTIs) in infants and young children. The limited availability of animal models complicates the development of prophylactic and therapeutic strategies targeting RV-C. Previous studies have identified human cadherin-related family member 3 (hCDHR3) as the cellular receptor for RV-C, with its expression enabling previously unsusceptible cells to support both viral entry and replication. Recently, an adult hCDHR3 transgenic mouse model was developed to investigate the role of human stimulator of interferon genes (hSTING) in RV-C15 infection <em>in vivo</em>. However, adult mice do not support efficient RV-C15 infection. Here, we report a transgenic mouse line expressing hCDHR3 constitutively that is highly susceptible to early-life infections by multiple serotypes of RV-C, including RV-C15, RV-C2, and RV-C41. Neonatal transgenic mice infected with various RV-C strains via the intraperitoneal (i.p.) route exhibit similar symptoms, such as severe inflammation, limb paralysis, and death. Moreover, passive immunization with antisera or therapeutic antibodies can protect against lethal RV-C infection in these transgenic mice. Overall, this study provides a valuable animal model for the <em>in vivo</em> antiviral evaluation against RV-C.</div></div>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":"235 ","pages":"Article 106102"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166354225000282","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Rhinovirus C (RV-C) is the primary causative agent of severe acute respiratory illnesses (ARTIs) in infants and young children. The limited availability of animal models complicates the development of prophylactic and therapeutic strategies targeting RV-C. Previous studies have identified human cadherin-related family member 3 (hCDHR3) as the cellular receptor for RV-C, with its expression enabling previously unsusceptible cells to support both viral entry and replication. Recently, an adult hCDHR3 transgenic mouse model was developed to investigate the role of human stimulator of interferon genes (hSTING) in RV-C15 infection in vivo. However, adult mice do not support efficient RV-C15 infection. Here, we report a transgenic mouse line expressing hCDHR3 constitutively that is highly susceptible to early-life infections by multiple serotypes of RV-C, including RV-C15, RV-C2, and RV-C41. Neonatal transgenic mice infected with various RV-C strains via the intraperitoneal (i.p.) route exhibit similar symptoms, such as severe inflammation, limb paralysis, and death. Moreover, passive immunization with antisera or therapeutic antibodies can protect against lethal RV-C infection in these transgenic mice. Overall, this study provides a valuable animal model for the in vivo antiviral evaluation against RV-C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
期刊最新文献
DHODH inhibitors: What will it take to get them into the clinic as antivirals? Transgenic mice expressing the human CDHR3 receptor: A sensitive RV-C infection model for the evaluation of vaccines and therapeutics Host-targeted antivirals against SARS-CoV-2 in clinical development - Prospect or disappointment? Targeting PI4KB and Src/Abl host kinases as broad-spectrum antiviral strategy: Myth or real opportunity? Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1