Jin Ning, Zhengyang Xu, Tianyu Geng, Zongju Yang, Wuhui Wang
{"title":"High-performance processing for film cooling holes on EB-PVD TBC-coated superalloys utilizing assisted electrode electrochemical discharge machining","authors":"Jin Ning, Zhengyang Xu, Tianyu Geng, Zongju Yang, Wuhui Wang","doi":"10.1016/j.jmatprotec.2025.118759","DOIUrl":null,"url":null,"abstract":"<div><div>With the escalating operating temperatures of turbine blades, single film cooling technique is inadequate, and high-temperature-resistant thermal barriers coatings (TBCs) prepared through electron beam physical vapor deposition (EB-PVD) are extensively adopted. However, due to the distinct physical attributes of each individual layer and the rigorous requirements for no recast layer and high productivity, the fabrication of film cooling holes on EB-PVD TBC-coated superalloys remains challenging. In this study, a novel assisted electrode electrochemical discharge machining approach has been proposed, during which the 8 wt% yttria stabilized zirconia (8YSZ) ceramic topcoat is processed within deionized water rather than hydrocarbon-based dielectric, while the NiCrAlY bond coat and Ni-based superalloy substrate are treated within a low conductivity solution. The 8YSZ ceramic topcoat removal mechanisms of evaporation, melting, thermal spalling, and mechanical erosion were evaluated with morphology analysis. The negligible damage to the 8YSZ ceramic topcoat during processing was revealed through subsurface structure investigation. Then, the voltage/current waveforms and processing phenomena were recorded to examine the processing characteristics of distinct layers. In addition, comparative experiments were conducted to assess the processing performance. The results suggest that compared to assisted electrode electrical discharge machining, assisted electrode electrochemical discharge machining achieves a ten-fold enhancement in material removal rate, but a 58.4 % reduction in tool wear ratio. The processed surface also exhibits superior integrity, evident from the absence of conductive layer on the 8YSZ ceramic topcoat or recast layer on the Ni-based superalloy. Hence, assisted electrode electrochemical discharge machining shows promising application prospects for high-performance processing of film cooling holes on EB-PVD TBC-coated superalloys.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118759"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000494","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the escalating operating temperatures of turbine blades, single film cooling technique is inadequate, and high-temperature-resistant thermal barriers coatings (TBCs) prepared through electron beam physical vapor deposition (EB-PVD) are extensively adopted. However, due to the distinct physical attributes of each individual layer and the rigorous requirements for no recast layer and high productivity, the fabrication of film cooling holes on EB-PVD TBC-coated superalloys remains challenging. In this study, a novel assisted electrode electrochemical discharge machining approach has been proposed, during which the 8 wt% yttria stabilized zirconia (8YSZ) ceramic topcoat is processed within deionized water rather than hydrocarbon-based dielectric, while the NiCrAlY bond coat and Ni-based superalloy substrate are treated within a low conductivity solution. The 8YSZ ceramic topcoat removal mechanisms of evaporation, melting, thermal spalling, and mechanical erosion were evaluated with morphology analysis. The negligible damage to the 8YSZ ceramic topcoat during processing was revealed through subsurface structure investigation. Then, the voltage/current waveforms and processing phenomena were recorded to examine the processing characteristics of distinct layers. In addition, comparative experiments were conducted to assess the processing performance. The results suggest that compared to assisted electrode electrical discharge machining, assisted electrode electrochemical discharge machining achieves a ten-fold enhancement in material removal rate, but a 58.4 % reduction in tool wear ratio. The processed surface also exhibits superior integrity, evident from the absence of conductive layer on the 8YSZ ceramic topcoat or recast layer on the Ni-based superalloy. Hence, assisted electrode electrochemical discharge machining shows promising application prospects for high-performance processing of film cooling holes on EB-PVD TBC-coated superalloys.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.