Predicting cardiovascular disease and all-cause mortality using the lymphocyte-to-monocyte ratio: Insights from explainable machine learning models

Jichao Wu , Die Huang , Jiefang Li , Jingxing Yi , Yu Lei , Jun Yin
{"title":"Predicting cardiovascular disease and all-cause mortality using the lymphocyte-to-monocyte ratio: Insights from explainable machine learning models","authors":"Jichao Wu ,&nbsp;Die Huang ,&nbsp;Jiefang Li ,&nbsp;Jingxing Yi ,&nbsp;Yu Lei ,&nbsp;Jun Yin","doi":"10.1016/j.ijcrp.2025.200372","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Cardiovascular disease (CVD) is a leading cause of death globally, with its incidence and mortality rates continuing to rise. While commonly used biomarkers such as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and blood glucose are widely applied, they have certain limitations. This study investigates the lymphocyte-to-monocyte ratio (LMR), a simple immune biomarker associated with inflammation, to assess whether it can serve as a new marker for predicting chronic inflammation in cardiovascular disease, and compares it to traditional biomarkers.</div></div><div><h3>Methods</h3><div>We conducted a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018, utilizing a cohort of 1518 participants with a median follow-up period of 150 months. During this time, 522 participants died, including 166 from cardiovascular disease. We employed various statistical methods, including weighted Cox proportional hazards models, restricted cubic spline models, and time-varying receiver operating characteristic curves, to examine the association between LMR and mortality risk.</div></div><div><h3>Results</h3><div>The analysis revealed an L-shaped relationship between LMR and the incidence of cardiovascular disease. Lower LMR levels were negatively correlated with all-cause and cardiovascular mortality. The XGBoost model yielded the best performance metrics (AUC and F1 scores), and SHAP value analysis indicated that LMR significantly contributes to CVD outcomes. Non-linear analyses confirmed a stable negative correlation between LMR and all-cause mortality.</div></div><div><h3>Conclusion</h3><div>The study concludes that LMR is a simple and practical indicator for predicting cardiovascular disease and its mortality. Low levels of LMR significantly increase the risk of both cardiovascular disease and all-cause mortality in patients.</div></div>","PeriodicalId":29726,"journal":{"name":"International Journal of Cardiology Cardiovascular Risk and Prevention","volume":"24 ","pages":"Article 200372"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cardiology Cardiovascular Risk and Prevention","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772487525000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cardiovascular disease (CVD) is a leading cause of death globally, with its incidence and mortality rates continuing to rise. While commonly used biomarkers such as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and blood glucose are widely applied, they have certain limitations. This study investigates the lymphocyte-to-monocyte ratio (LMR), a simple immune biomarker associated with inflammation, to assess whether it can serve as a new marker for predicting chronic inflammation in cardiovascular disease, and compares it to traditional biomarkers.

Methods

We conducted a cross-sectional analysis of data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2018, utilizing a cohort of 1518 participants with a median follow-up period of 150 months. During this time, 522 participants died, including 166 from cardiovascular disease. We employed various statistical methods, including weighted Cox proportional hazards models, restricted cubic spline models, and time-varying receiver operating characteristic curves, to examine the association between LMR and mortality risk.

Results

The analysis revealed an L-shaped relationship between LMR and the incidence of cardiovascular disease. Lower LMR levels were negatively correlated with all-cause and cardiovascular mortality. The XGBoost model yielded the best performance metrics (AUC and F1 scores), and SHAP value analysis indicated that LMR significantly contributes to CVD outcomes. Non-linear analyses confirmed a stable negative correlation between LMR and all-cause mortality.

Conclusion

The study concludes that LMR is a simple and practical indicator for predicting cardiovascular disease and its mortality. Low levels of LMR significantly increase the risk of both cardiovascular disease and all-cause mortality in patients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
审稿时长
72 days
期刊最新文献
Implications for global health of heart failure and lung cancer mortality trends in aging populations Vaping illusions: The hidden risks of E-cigarette use among young Filipinos and adolescents in Latin America Predicting cardiovascular disease and all-cause mortality using the lymphocyte-to-monocyte ratio: Insights from explainable machine learning models Unraveling trends and disparities in acute myocardial infarction-related mortality among adult cancer patients: A nationwide CDC-WONDER analysis (1999–2020) Expression level of miR-146a is associated with the coronary lesion severity and clinical prognosis in patients with unstable angina pectoris
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1