Development and properties of lightweight concrete based on core-shell cold-bonded lightweight aggregate using epoxy resin as interfacial enhancer

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of building engineering Pub Date : 2025-02-06 DOI:10.1016/j.jobe.2025.112029
Zhenyu Huang , Yu Zhou , Lijie Chen
{"title":"Development and properties of lightweight concrete based on core-shell cold-bonded lightweight aggregate using epoxy resin as interfacial enhancer","authors":"Zhenyu Huang ,&nbsp;Yu Zhou ,&nbsp;Lijie Chen","doi":"10.1016/j.jobe.2025.112029","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the escalating shortage of construction materials and natural aggregate production, the present study aims to produce lightweight concrete (LWC) utilizing a novel artificial core-shell cold-bonded lightweight aggregate (CCLA). The newly developed CCLAs employ an expanded polystyrene (EPS) waste core encapsulated by a cementitious shell, leveraging epoxy resin as interfacial enhancer for reducing EPS exposure ratio from 96.5 % to 0 %. Systematic investigations elucidate the influence of key manufacturing parameters, such as the disc pelletizer's inclination angle, rotation speed, and curing conditions, on the quality of CCLAs. Furthermore, the study explores the use of limestone calcined clay cement, steel slag and ground granulated blast furnace slag as shell materials for optimizing the shell composite with maximal performance. Comprehensive assessments of the resulting CCLA-based LWC (CCLA-LWC) cover fundamental properties, including compressive, splitting, and flexural strengths, alongside a detailed constitutive model under uniaxial compression. Comparisons with existing technologies affirm the superiority of using epoxy resin as an interfacial enhancer for the developed CCLAs, particularly in terms of density, strength, and specific strength. The lightweight aggregate concrete CCLA-LWC developed in this study has the superior comprehensive performance compared to those core-shell lightweight aggregate concretes in existing literature.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":"102 ","pages":"Article 112029"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710225002657","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the escalating shortage of construction materials and natural aggregate production, the present study aims to produce lightweight concrete (LWC) utilizing a novel artificial core-shell cold-bonded lightweight aggregate (CCLA). The newly developed CCLAs employ an expanded polystyrene (EPS) waste core encapsulated by a cementitious shell, leveraging epoxy resin as interfacial enhancer for reducing EPS exposure ratio from 96.5 % to 0 %. Systematic investigations elucidate the influence of key manufacturing parameters, such as the disc pelletizer's inclination angle, rotation speed, and curing conditions, on the quality of CCLAs. Furthermore, the study explores the use of limestone calcined clay cement, steel slag and ground granulated blast furnace slag as shell materials for optimizing the shell composite with maximal performance. Comprehensive assessments of the resulting CCLA-based LWC (CCLA-LWC) cover fundamental properties, including compressive, splitting, and flexural strengths, alongside a detailed constitutive model under uniaxial compression. Comparisons with existing technologies affirm the superiority of using epoxy resin as an interfacial enhancer for the developed CCLAs, particularly in terms of density, strength, and specific strength. The lightweight aggregate concrete CCLA-LWC developed in this study has the superior comprehensive performance compared to those core-shell lightweight aggregate concretes in existing literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
期刊最新文献
A review of the repair measures for reinforced concrete affected by chloride ion corrosion Energy consumption prediction for office buildings: Performance evaluation and application of ensemble machine learning techniques Development and properties of lightweight concrete based on core-shell cold-bonded lightweight aggregate using epoxy resin as interfacial enhancer Mechanical properties and pore structure characterization of crumb rubber concrete using equal size replacement method Progressive collapse resistance of planar prestressed concrete frame with infill walls under corner column failure scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1