Advanced deep learning techniques for recognition of dental implants

Veena Benakatti , Ramesh P. Nayakar , Mallikarjun Anandhalli , Rohit sukhasare
{"title":"Advanced deep learning techniques for recognition of dental implants","authors":"Veena Benakatti ,&nbsp;Ramesh P. Nayakar ,&nbsp;Mallikarjun Anandhalli ,&nbsp;Rohit sukhasare","doi":"10.1016/j.jobcr.2025.01.016","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Dental implants are the most accepted prosthetic alternative for missing teeth. With growing demands, several manufacturers have entered the market and produce a variety of implant brands creating a challenge for clinicians to identify the implant when the necessity arises. Currently, radiographs are the only tools for implant identification which is inherently a complex process, hence the need for implant identification technique. Artificial intelligence capable of analysing images in a radiograph and predicting implant type is an efficient tool. The study evaluated an advanced deep learning technique, DEtection TRanformer for implant identification.</div></div><div><h3>Methods</h3><div>A transformer-based deep learning technique, DEtection TRanformer was trained to identify implants in radiographs. A dataset of 1138 images consisting of five implant types captured from periapical and panoramic radiographs was chosen for the study. After augmentation, a dataset of 1744 images was secured and then split into training, validation and test datasets for the model. The model was trained and evaluated for its performance.</div></div><div><h3>Results</h3><div>The model achieved an overall precision of 0.83 and a recall score of 0.89. The model achieved an F1-score of 0.82 indicating a strong balance between recall and precision. The Precision-Recall Curve, with an AUC of 0.96, showed that the model performed well across various thresholds. The training and validation graphs showed a consistent decrease in the loss functions across classes.</div></div><div><h3>Conclusion</h3><div>The model showed high performance on the training data, though it faced challenges with unseen validation data. High precision, recall and F1 score indicate the model's potential for implant identification. Optimizing this model for a balance between accuracy and efficiency will be necessary for real-time medical imaging applications.</div></div>","PeriodicalId":16609,"journal":{"name":"Journal of oral biology and craniofacial research","volume":"15 2","pages":"Pages 215-220"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oral biology and craniofacial research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212426825000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Dental implants are the most accepted prosthetic alternative for missing teeth. With growing demands, several manufacturers have entered the market and produce a variety of implant brands creating a challenge for clinicians to identify the implant when the necessity arises. Currently, radiographs are the only tools for implant identification which is inherently a complex process, hence the need for implant identification technique. Artificial intelligence capable of analysing images in a radiograph and predicting implant type is an efficient tool. The study evaluated an advanced deep learning technique, DEtection TRanformer for implant identification.

Methods

A transformer-based deep learning technique, DEtection TRanformer was trained to identify implants in radiographs. A dataset of 1138 images consisting of five implant types captured from periapical and panoramic radiographs was chosen for the study. After augmentation, a dataset of 1744 images was secured and then split into training, validation and test datasets for the model. The model was trained and evaluated for its performance.

Results

The model achieved an overall precision of 0.83 and a recall score of 0.89. The model achieved an F1-score of 0.82 indicating a strong balance between recall and precision. The Precision-Recall Curve, with an AUC of 0.96, showed that the model performed well across various thresholds. The training and validation graphs showed a consistent decrease in the loss functions across classes.

Conclusion

The model showed high performance on the training data, though it faced challenges with unseen validation data. High precision, recall and F1 score indicate the model's potential for implant identification. Optimizing this model for a balance between accuracy and efficiency will be necessary for real-time medical imaging applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
133
审稿时长
167 days
期刊介绍: Journal of Oral Biology and Craniofacial Research (JOBCR)is the official journal of the Craniofacial Research Foundation (CRF). The journal aims to provide a common platform for both clinical and translational research and to promote interdisciplinary sciences in craniofacial region. JOBCR publishes content that includes diseases, injuries and defects in the head, neck, face, jaws and the hard and soft tissues of the mouth and jaws and face region; diagnosis and medical management of diseases specific to the orofacial tissues and of oral manifestations of systemic diseases; studies on identifying populations at risk of oral disease or in need of specific care, and comparing regional, environmental, social, and access similarities and differences in dental care between populations; diseases of the mouth and related structures like salivary glands, temporomandibular joints, facial muscles and perioral skin; biomedical engineering, tissue engineering and stem cells. The journal publishes reviews, commentaries, peer-reviewed original research articles, short communication, and case reports.
期刊最新文献
Comparative evaluation of Willems and Cameriere methods of dental age estimation among 6–14 year old Bengali children Effect of nutritional status on dental maturation and mandibular bone density among Indonesian children aged 6–9 Years in Yogyakarta Early cognizance of folic acid supplementation among pregnant women in the prevention of cleft lip and palate- a questionnaire study Effects of Roselle (Hibiscus sabdariffa Linn.) flower extracts on various inflammatory and bone apposition biomarkers during orthodontic tooth movement: An experimental animal study Novel digital measurement system for predicting surgical outcomes in patients with primary non-syndromic craniosynostosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1