The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation

IF 11.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2025-02-05 DOI:10.1016/j.redox.2025.103523
James N. Cobley , Panagiotis N. Chatzinikolaou , Cameron A. Schmidt
{"title":"The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation","authors":"James N. Cobley ,&nbsp;Panagiotis N. Chatzinikolaou ,&nbsp;Cameron A. Schmidt","doi":"10.1016/j.redox.2025.103523","DOIUrl":null,"url":null,"abstract":"<div><div>The post-translational redox regulation of protein function by cysteine oxidation controls diverse biological processes, from cell division to death. However, most current site-centric paradigms fail to capture the nonlinear and emergent nature of redox regulation in proteins with multiple cysteines. Here, we present a proteoform-centric theory of redox regulation grounded in the <em>i</em>-space. The <em>i</em>-space encapsulates the theoretical landscape of all possible cysteine proteoforms. Using computational approaches, we quantify the vast size of the abstract <em>i</em>-space, revealing its scale-free architecture—elucidating the disproportionate influence of cysteine-rich proteins. We define mathematical rules governing cysteine proteoform dynamics. Their dynamics are inherently nonlinear, context-dependent, and fundamentally constrained by protein copy numbers. Monte Carlo simulations of the human protein PTP1B reveal extensive <em>i</em>-space sampling beyond site-centric models, supporting the “oxiform conjecture”. This conjecture posits that highly oxidised proteoforms, molecules bearing multiple oxidised cysteines, are central to redox regulation. In support, even 90%-reduced proteomes can house vast numbers of unique, potentially functioanlly diverse, oxiforms. This framework offers a transformative lens for understanding the redox biology of proteoforms.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103523"},"PeriodicalIF":11.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000369","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The post-translational redox regulation of protein function by cysteine oxidation controls diverse biological processes, from cell division to death. However, most current site-centric paradigms fail to capture the nonlinear and emergent nature of redox regulation in proteins with multiple cysteines. Here, we present a proteoform-centric theory of redox regulation grounded in the i-space. The i-space encapsulates the theoretical landscape of all possible cysteine proteoforms. Using computational approaches, we quantify the vast size of the abstract i-space, revealing its scale-free architecture—elucidating the disproportionate influence of cysteine-rich proteins. We define mathematical rules governing cysteine proteoform dynamics. Their dynamics are inherently nonlinear, context-dependent, and fundamentally constrained by protein copy numbers. Monte Carlo simulations of the human protein PTP1B reveal extensive i-space sampling beyond site-centric models, supporting the “oxiform conjecture”. This conjecture posits that highly oxidised proteoforms, molecules bearing multiple oxidised cysteines, are central to redox regulation. In support, even 90%-reduced proteomes can house vast numbers of unique, potentially functioanlly diverse, oxiforms. This framework offers a transformative lens for understanding the redox biology of proteoforms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性半胱氨酸在i-空间的氧化还原动力学:一种以蛋白质为中心的氧化还原调控理论
半胱氨酸氧化对蛋白质功能的翻译后氧化还原调节控制着从细胞分裂到死亡的多种生物过程。然而,目前大多数以位点为中心的范式未能捕捉到具有多个半胱氨酸的蛋白质中氧化还原调控的非线性和突发性。在这里,我们提出了一个以i-空间为基础的以蛋白质为中心的氧化还原调控理论。i空间概括了所有可能的半胱氨酸变形形式的理论图景。使用计算方法,我们量化了抽象i空间的巨大尺寸,揭示了其无尺度结构-阐明了富含半胱氨酸的蛋白质的不成比例的影响。我们定义了控制半胱氨酸蛋白质形态动力学的数学规则。它们的动态本质上是非线性的,依赖于环境,并且从根本上受到蛋白质拷贝数的限制。人类蛋白PTP1B的蒙特卡罗模拟揭示了广泛的i-空间采样,超出了以位点为中心的模型,支持“氧仿猜想”。这一猜想假设高度氧化的蛋白质形态,即携带多种氧化半胱氨酸的分子,是氧化还原调节的核心。作为支持,即使是减少90%的蛋白质组也可以容纳大量独特的,潜在功能多样化的氧化酶。这个框架为理解变形形态的氧化还原生物学提供了一个变革性的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
4E-BP Inhibition Ameliorates Heart Failure Through Translational Upregulation of SERCA2a and Modulation of Mitochondrial Redox Signaling in Cardiomyocytes Apolipoprotein C3 exacerbates vascular calcification by promoting ferroptosis via the TLR2/AMPK pathway in vascular smooth muscle cells Corrigendum to "CREG1 attenuates doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis of cardiomyocytes" [Red. Biol. 75 (2024) 103293]. Endothelial Cystathionine-γ-Lyase (CTH) Regulates Body Weight and Insulin Resistance in Mice Fed a High-Fat Diet YY1 nitration participates in DbCM cardiomyocyte lipotoxicity by inhibiting ANXA3-induced microlipophagy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1