Exploring the enablers of data-driven business models: A mixed-methods approach

IF 12.9 1区 管理学 Q1 BUSINESS Technological Forecasting and Social Change Pub Date : 2025-02-08 DOI:10.1016/j.techfore.2025.124036
Reza Dabestani , Sam Solaimani , Gazar Ajroemjan , Kitty Koelemeijer
{"title":"Exploring the enablers of data-driven business models: A mixed-methods approach","authors":"Reza Dabestani ,&nbsp;Sam Solaimani ,&nbsp;Gazar Ajroemjan ,&nbsp;Kitty Koelemeijer","doi":"10.1016/j.techfore.2025.124036","DOIUrl":null,"url":null,"abstract":"<div><div>One of the critical objectives underlying the digital transformation initiatives of numerous enterprises is the introduction of novel data-driven business models (DDBMs) aimed at facilitating the creation, delivery, and capture of value. While DDBMs has gained immense traction among scholars and practitioners, the implementation and scaling leave much to be desired. One widely argued reason is our poor understanding of the factors that enable DDBM's effective implementation. Using a mixed-methods approach, this study identifies a comprehensive set of enablers, explores the enablers' interdependencies, and discusses how the empirical findings are of value in DDBMs' implementation from theoretical and practical viewpoints.</div></div>","PeriodicalId":48454,"journal":{"name":"Technological Forecasting and Social Change","volume":"213 ","pages":"Article 124036"},"PeriodicalIF":12.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technological Forecasting and Social Change","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040162525000678","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the critical objectives underlying the digital transformation initiatives of numerous enterprises is the introduction of novel data-driven business models (DDBMs) aimed at facilitating the creation, delivery, and capture of value. While DDBMs has gained immense traction among scholars and practitioners, the implementation and scaling leave much to be desired. One widely argued reason is our poor understanding of the factors that enable DDBM's effective implementation. Using a mixed-methods approach, this study identifies a comprehensive set of enablers, explores the enablers' interdependencies, and discusses how the empirical findings are of value in DDBMs' implementation from theoretical and practical viewpoints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
21.30
自引率
10.80%
发文量
813
期刊介绍: Technological Forecasting and Social Change is a prominent platform for individuals engaged in the methodology and application of technological forecasting and future studies as planning tools, exploring the interconnectedness of social, environmental, and technological factors. In addition to serving as a key forum for these discussions, we offer numerous benefits for authors, including complimentary PDFs, a generous copyright policy, exclusive discounts on Elsevier publications, and more.
期刊最新文献
Dynamic optimization of e-commerce supply chains for fresh products with blockchain and reference effect Hesitation at increasing integration: The feasibility of Norway expanding cross-border renewable electricity interconnection to support European decarbonisation Shaping the future through developing and managing breakthrough innovations: A new conceptual framework Critical successes factors for the adoption of additive manufacturing: Integrated impact for circular economy model Key enablers for energy firms in implementing the SDGs: Lessons based on a resource-based view approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1