Anti-androgenetic effect of diphlorethohydroxycarmalol on testosterone-induced hair loss by inhibiting 5α-reductase and promoting Wnt/β-catenin signaling pathway in human dermal papilla cells
Seung Tae Im , Haeun Mun , Nalae Kang , Soo-Jin Heo , Seung-Hong Lee
{"title":"Anti-androgenetic effect of diphlorethohydroxycarmalol on testosterone-induced hair loss by inhibiting 5α-reductase and promoting Wnt/β-catenin signaling pathway in human dermal papilla cells","authors":"Seung Tae Im , Haeun Mun , Nalae Kang , Soo-Jin Heo , Seung-Hong Lee","doi":"10.1016/j.tiv.2025.106017","DOIUrl":null,"url":null,"abstract":"<div><div>Diphlorethohydroxycarmalol (DPHC), a marine phlorotannin compound derived from the brown alga <em>Ishige okamurae</em>, has been known to have a variety of biological effects. Recently, marine resources have been highlighted by their effects on ameliorating alopecia and related hair loss. Therefore, this study aimed to investigate the potential of DPHC isolated from <em>I. okamurae</em> as a hair loss treatment through examination of its anti-androgenic alopecia effects. Molecular docking analysis predicted that DPHC can be used as a 5α-reductase inhibitor superior to finasteride, which has traditionally been used as an anti-androgenic alopecia agent. In addition, DPHC significantly inhibited 5α-reductase activity in dihydrotestosterone (DHT)-treated human dermal papilla (HDP) cells, and downregulated hair growth inhibitor proteins such as AR, DKK1, TGF-β1, and IL-6. Moreover, DPHC treatment remarkably upregulated both the phosphorylation levels of GSK3β and expression levels of β-catenin in DHT-treated HDP cells, confirming the effects of DPHC on activating the Wnt/β-catenin signaling pathway. Therefore, these findings suggest that DPHC has a significant potential to prevent androgenic alopecia by promoting hair growth and preventing hair loss.</div></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"104 ","pages":"Article 106017"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0887233325000116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diphlorethohydroxycarmalol (DPHC), a marine phlorotannin compound derived from the brown alga Ishige okamurae, has been known to have a variety of biological effects. Recently, marine resources have been highlighted by their effects on ameliorating alopecia and related hair loss. Therefore, this study aimed to investigate the potential of DPHC isolated from I. okamurae as a hair loss treatment through examination of its anti-androgenic alopecia effects. Molecular docking analysis predicted that DPHC can be used as a 5α-reductase inhibitor superior to finasteride, which has traditionally been used as an anti-androgenic alopecia agent. In addition, DPHC significantly inhibited 5α-reductase activity in dihydrotestosterone (DHT)-treated human dermal papilla (HDP) cells, and downregulated hair growth inhibitor proteins such as AR, DKK1, TGF-β1, and IL-6. Moreover, DPHC treatment remarkably upregulated both the phosphorylation levels of GSK3β and expression levels of β-catenin in DHT-treated HDP cells, confirming the effects of DPHC on activating the Wnt/β-catenin signaling pathway. Therefore, these findings suggest that DPHC has a significant potential to prevent androgenic alopecia by promoting hair growth and preventing hair loss.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.