T. Farrukh, R. Houim, D. Guildenbecher, M. Welliver, S. Balachandar
{"title":"Particle and fluid time scales in a spherical multiphase blast flow","authors":"T. Farrukh, R. Houim, D. Guildenbecher, M. Welliver, S. Balachandar","doi":"10.1007/s00193-024-01207-z","DOIUrl":null,"url":null,"abstract":"<div><p>The explosive dispersal of particles is an important problem in multiphase physics and is of considerable interest due to its many applications. Simulations that examine particulate dispersal in such flows have employed a variety of methods, including Euler–Lagrange, Euler–Euler, and dusty gas. The appropriate choice of methodology depends on the balance between accuracy and computational cost. In general, if the particles are very small and tracer-like, a cheaper dusty gas approach will be sufficient. In this paper, we present a series of two-dimensional numerical simulations investigating particle and fluid time scales in the context of the explosive dispersal of particles within a spherical shock-tube problem. Using the timescales, the appropriateness of the equilibrium Eulerian approach in calculating the particle velocity is investigated. With increasing particle inertia, the equilibrium Eulerian approximation offers a good compromise between accuracy and computational efficiency, where the particle velocity becomes an algebraic function of the fluid velocity, acceleration, and particle time scale. Different blast parameters, for which the calculation of particle velocity based solely on the flow acceleration and particle time scale is valid, were studied and presented. Initial particle size, volume fraction, blast pressure, and temperature ratio were varied, and the resulting effects on the particle time scale, fluid time scale, and the Stokes number are presented. It was found that the Stokes number is a valid predictor of the viability of the equilibrium Eulerian approximation. For values of the Stokes number below unity, there was good agreement between the equilibrium Eulerian and the Euler–Euler methods. It was observed that the most significant factor impacting the Stokes number, and consequently, the accuracy of the equilibrium Eulerian approximation, is the particle size.\n</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"35 1","pages":"57 - 75"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01207-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The explosive dispersal of particles is an important problem in multiphase physics and is of considerable interest due to its many applications. Simulations that examine particulate dispersal in such flows have employed a variety of methods, including Euler–Lagrange, Euler–Euler, and dusty gas. The appropriate choice of methodology depends on the balance between accuracy and computational cost. In general, if the particles are very small and tracer-like, a cheaper dusty gas approach will be sufficient. In this paper, we present a series of two-dimensional numerical simulations investigating particle and fluid time scales in the context of the explosive dispersal of particles within a spherical shock-tube problem. Using the timescales, the appropriateness of the equilibrium Eulerian approach in calculating the particle velocity is investigated. With increasing particle inertia, the equilibrium Eulerian approximation offers a good compromise between accuracy and computational efficiency, where the particle velocity becomes an algebraic function of the fluid velocity, acceleration, and particle time scale. Different blast parameters, for which the calculation of particle velocity based solely on the flow acceleration and particle time scale is valid, were studied and presented. Initial particle size, volume fraction, blast pressure, and temperature ratio were varied, and the resulting effects on the particle time scale, fluid time scale, and the Stokes number are presented. It was found that the Stokes number is a valid predictor of the viability of the equilibrium Eulerian approximation. For values of the Stokes number below unity, there was good agreement between the equilibrium Eulerian and the Euler–Euler methods. It was observed that the most significant factor impacting the Stokes number, and consequently, the accuracy of the equilibrium Eulerian approximation, is the particle size.
期刊介绍:
Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization.
The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine.
Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community.
The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.