A quantum residual attention neural network for high-precision material property prediction

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2025-02-10 DOI:10.1007/s11128-025-04670-4
Qingchuan Yang, Wenjun Zhang, Lianfu Wei
{"title":"A quantum residual attention neural network for high-precision material property prediction","authors":"Qingchuan Yang,&nbsp;Wenjun Zhang,&nbsp;Lianfu Wei","doi":"10.1007/s11128-025-04670-4","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid advancement of quantum neural networks has led to the application of a range of quantum machine learning algorithms, such as the hybrid quantum convolutional neural network (HQCNN), in various data processing tasks. To further enhance the convergence rate and accuracy of learning from a small number of samples, we introduce a novel model called quantum residual attention neural network (QRANN), which incorporates a quantum residual attention layer (QRAL) to reduce the depth of the quantum circuit and the number of trained parameters. The benefits of this new model are demonstrated through its application to the efficient prediction of material properties based on component optimization. Specifically, we conducted numerical experiments using publicly available alloy material datasets from a hackathon competition to predict the properties of alloy materials based on their composition. The results indicate that the proposed QRANN algorithm exhibits superior performance in terms of training convergence speed, prediction accuracy, and generalization ability compared to HQCNN, QSANN, variational quantum regression (VQR) algorithm, and classical multilayer perceptron. This suggests that QRANN is particularly well-suited for learning from limited datasets. Notably, by introducing a fully parameterized QRAL, QRANN can be implemented with fewer parameters and a lower circuit depth compared to HQCNN, using approximately only 74% and 58% of the parameters and circuit depth used in HQCNN experiments, respectively. Therefore, the proposed algorithm can be feasibly realized using current noisy intermediate-scale quantum devices.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-025-04670-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of quantum neural networks has led to the application of a range of quantum machine learning algorithms, such as the hybrid quantum convolutional neural network (HQCNN), in various data processing tasks. To further enhance the convergence rate and accuracy of learning from a small number of samples, we introduce a novel model called quantum residual attention neural network (QRANN), which incorporates a quantum residual attention layer (QRAL) to reduce the depth of the quantum circuit and the number of trained parameters. The benefits of this new model are demonstrated through its application to the efficient prediction of material properties based on component optimization. Specifically, we conducted numerical experiments using publicly available alloy material datasets from a hackathon competition to predict the properties of alloy materials based on their composition. The results indicate that the proposed QRANN algorithm exhibits superior performance in terms of training convergence speed, prediction accuracy, and generalization ability compared to HQCNN, QSANN, variational quantum regression (VQR) algorithm, and classical multilayer perceptron. This suggests that QRANN is particularly well-suited for learning from limited datasets. Notably, by introducing a fully parameterized QRAL, QRANN can be implemented with fewer parameters and a lower circuit depth compared to HQCNN, using approximately only 74% and 58% of the parameters and circuit depth used in HQCNN experiments, respectively. Therefore, the proposed algorithm can be feasibly realized using current noisy intermediate-scale quantum devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
A quantum residual attention neural network for high-precision material property prediction Quantum claw-finding attacks on 5-round Feistel structure and generalized Feistel schemes Hamiltonians that realize perfect quantum state transfer and early state exclusion How decoherence affects the security of BB84 quantum key distribution protocol Cyclic codes over a semi-local ring and their applications to QEC and EAQEC codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1