Estimation of rock strength parameters from petrological contents using tree-based machine learning techniques

Javid Hussain, Xiaodong Fu, Jian Chen, Nafees Ali, Sayed Muhammad Iqbal, Wakeel Hussain, Altaf Hussain, Ahmed Saleem
{"title":"Estimation of rock strength parameters from petrological contents using tree-based machine learning techniques","authors":"Javid Hussain,&nbsp;Xiaodong Fu,&nbsp;Jian Chen,&nbsp;Nafees Ali,&nbsp;Sayed Muhammad Iqbal,&nbsp;Wakeel Hussain,&nbsp;Altaf Hussain,&nbsp;Ahmed Saleem","doi":"10.1007/s43503-024-00047-1","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for construction materials in Pakistan has experienced a significant increase, particularly due to the China-Pakistan Economic Corridor (CPEC) project, which necessitates substantial amounts of resilient resources for infrastructure development. Parameters of rock strength, including uniaxial compressive strength (UCS), Young’s modulus (E), and Poisson’s ratio (ν), are critical attributes of rock materials vital for applications such as rock slope stability assessment, tunnel construction, and foundation design. Conventionally, the measurement of UCS, E, and ν in laboratory settings resource-intensive, requiring considerable time and financial investment. This study proposes to provide a comprehensive assessment framework using an adaptive boosting machine (AdaBoost), extreme gradient boosting machine (XGBoost), and category gradient boosting machine (CatBoost), to indirectly estimate UCS, E, and ν through streamlined mineralogical analyses. The performance of the boosting trees was analyzed using Taylor diagrams and a suite of five regression metrics: coefficient of determination (R<sup>2</sup>), root mean square error (RMSE), mean absolute error (MAE), variance accounted for (VAF), and the A-20 index. The results indicate that the proposed boosting trees robust predictive capabilities for the constructed database. Notably, AdaBoost demonstrated the highest efficacy in predicting the strength of carbonate rock, achieving R<sup>2</sup> values of 0.98, 0.99, and 0.97, with the lowest RMSE values of 0.3164, 0.63, and 0.18, for UCS, E, and ν, respectively. Moreover, variable importance analysis highlighted that the presence of micrite and calcite has a significant impact on predicting UCS, E, and ν of carbonate rock. Furthermore, the AdaBoost model was validated using an independent dataset, which corroborated its predictive reliability. In conclusion, the proposed models present a highly effective methodology for the indirect prediction of essential mechanical properties of carbonate rocks, offering substantial time and cost efficiencies compared to traditional laboratory techniques.</p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-024-00047-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-024-00047-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for construction materials in Pakistan has experienced a significant increase, particularly due to the China-Pakistan Economic Corridor (CPEC) project, which necessitates substantial amounts of resilient resources for infrastructure development. Parameters of rock strength, including uniaxial compressive strength (UCS), Young’s modulus (E), and Poisson’s ratio (ν), are critical attributes of rock materials vital for applications such as rock slope stability assessment, tunnel construction, and foundation design. Conventionally, the measurement of UCS, E, and ν in laboratory settings resource-intensive, requiring considerable time and financial investment. This study proposes to provide a comprehensive assessment framework using an adaptive boosting machine (AdaBoost), extreme gradient boosting machine (XGBoost), and category gradient boosting machine (CatBoost), to indirectly estimate UCS, E, and ν through streamlined mineralogical analyses. The performance of the boosting trees was analyzed using Taylor diagrams and a suite of five regression metrics: coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), variance accounted for (VAF), and the A-20 index. The results indicate that the proposed boosting trees robust predictive capabilities for the constructed database. Notably, AdaBoost demonstrated the highest efficacy in predicting the strength of carbonate rock, achieving R2 values of 0.98, 0.99, and 0.97, with the lowest RMSE values of 0.3164, 0.63, and 0.18, for UCS, E, and ν, respectively. Moreover, variable importance analysis highlighted that the presence of micrite and calcite has a significant impact on predicting UCS, E, and ν of carbonate rock. Furthermore, the AdaBoost model was validated using an independent dataset, which corroborated its predictive reliability. In conclusion, the proposed models present a highly effective methodology for the indirect prediction of essential mechanical properties of carbonate rocks, offering substantial time and cost efficiencies compared to traditional laboratory techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature fusion of single and orthogonal polarized rock images for intelligent lithology identification Estimation of rock strength parameters from petrological contents using tree-based machine learning techniques A review of sustainability assessment of geopolymer concrete through AI-based life cycle analysis Research on slope stability assessment methods: a comparative analysis of limit equilibrium, finite element, and analytical approaches for road embankment stabilization Data-driven analysis in 3D concrete printing: predicting and optimizing construction mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1