{"title":"Path integral for the quartic oscillator: an accurate analytic formula for the partition function","authors":"Michel Caffarel","doi":"10.1007/s10910-024-01671-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this work an approximate analytic expression for the quantum partition function of the quartic oscillator described by the potential <span>\\(V(x) = \\frac{1}{2} \\omega ^2 x^2 + g x^4\\)</span> is presented. Using a path integral formalism, the exact partition function is approximated by the partition function of a harmonic oscillator with an effective frequency depending both on the temperature and coupling constant <i>g</i>. By invoking a Principle of Minimal Sensitivity (PMS) of the path integral to the effective frequency, we derive a mathematically well-defined analytic formula for the partition function. Quite remarkably, the formula reproduces qualitatively and quantitatively the key features of the exact partition function. The free energy is accurate to a few percent over the entire range of temperatures and coupling strengths <i>g</i>. Both the harmonic (<span>\\(g\\rightarrow 0\\)</span>) and classical (high-temperature) limits are exactly recovered. The divergence of the power series of the ground-state energy at weak coupling, characterized by a factorial growth of the perturbational energies, is reproduced as well as the functional form of the strong-coupling expansion along with accurate coefficients. Explicit accurate expressions for the ground- and first-excited state energies, <span>\\(E_0(g)\\)</span> and <span>\\(E_1(g)\\)</span> are also presented.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":"63 2","pages":"353 - 382"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10910-024-01671-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01671-z","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work an approximate analytic expression for the quantum partition function of the quartic oscillator described by the potential \(V(x) = \frac{1}{2} \omega ^2 x^2 + g x^4\) is presented. Using a path integral formalism, the exact partition function is approximated by the partition function of a harmonic oscillator with an effective frequency depending both on the temperature and coupling constant g. By invoking a Principle of Minimal Sensitivity (PMS) of the path integral to the effective frequency, we derive a mathematically well-defined analytic formula for the partition function. Quite remarkably, the formula reproduces qualitatively and quantitatively the key features of the exact partition function. The free energy is accurate to a few percent over the entire range of temperatures and coupling strengths g. Both the harmonic (\(g\rightarrow 0\)) and classical (high-temperature) limits are exactly recovered. The divergence of the power series of the ground-state energy at weak coupling, characterized by a factorial growth of the perturbational energies, is reproduced as well as the functional form of the strong-coupling expansion along with accurate coefficients. Explicit accurate expressions for the ground- and first-excited state energies, \(E_0(g)\) and \(E_1(g)\) are also presented.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.