EEG microstate as a biomarker of personalized transcranial magnetic stimulation treatment on anhedonia in depression

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES Behavioural Brain Research Pub Date : 2025-02-05 DOI:10.1016/j.bbr.2025.115463
QiangYan Che , Chunhua Xi , Yunlin Sun , Xingyu Zhao , Lei Wang , Ke Wu , Junyu Mao , Xinyu Huang , Kai Wang , Yanghua Tian , Rong Ye , Fengqiong Yu
{"title":"EEG microstate as a biomarker of personalized transcranial magnetic stimulation treatment on anhedonia in depression","authors":"QiangYan Che ,&nbsp;Chunhua Xi ,&nbsp;Yunlin Sun ,&nbsp;Xingyu Zhao ,&nbsp;Lei Wang ,&nbsp;Ke Wu ,&nbsp;Junyu Mao ,&nbsp;Xinyu Huang ,&nbsp;Kai Wang ,&nbsp;Yanghua Tian ,&nbsp;Rong Ye ,&nbsp;Fengqiong Yu","doi":"10.1016/j.bbr.2025.115463","DOIUrl":null,"url":null,"abstract":"<div><div>Anhedonia, a core feature of major depressive disorder (MDD), presents significant treatment challenges with conventional methods. Circuit-targeted, personalized repetitive transcranial magnetic stimulation (rTMS) has shown potentiation by focusing on disruptions in specific networks related to anhedonia. However, how rTMS modulates brain network dynamics in anhedonia is not yet fully understood. This research sought to explore these effects using EEG microstate analysis. In this double-blind, randomized, sham-controlled study, resting-state functional MRI was employed to pinpoint the left dorsolateral prefrontal cortex (DLPFC) region that exhibited the strongest functional connectivity to the nucleus accumbens (NAcc), used as the target for rTMS stimulation. Rest-state EEG data from 49 depressive patients with anhedonia(active=26, sham=23) were analyzed both at baseline and after treatment. In addition, a group of 15 healthy participants was included to serve as baseline controls. Resting-state EEG data were collected at baseline and post-treatment. Using polarity-insensitive k-means clustering, EEG microstates were segmented into five categories (A-E). Circuit-targeted rTMS significantly alleviated symptoms of anhedonia and depression. Compared to healthy controls, patients with anhedonia showed reduced microstate B and C occurrence, along with increased microstate D duration. After rTMS targeting the DLPFC-NAcc pathway, the active treatment group exhibited normalization of microstate C occurrence and a reduction in microstate E duration. Notably, the increase in microstate C was significantly correlated with improvements in anticipatory anhedonia, and these changes were observed specifically in treatment responders. The findings suggest that microstate C is linked to anhedonia and could serve as a reliable biomarker for personalized rTMS treatment. These results provide insights into the neural mechanisms underlying rTMS for anhedonia and highlight the potential of EEG microstate analysis in guiding personalized treatment strategies for depression.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"483 ","pages":"Article 115463"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016643282500049X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anhedonia, a core feature of major depressive disorder (MDD), presents significant treatment challenges with conventional methods. Circuit-targeted, personalized repetitive transcranial magnetic stimulation (rTMS) has shown potentiation by focusing on disruptions in specific networks related to anhedonia. However, how rTMS modulates brain network dynamics in anhedonia is not yet fully understood. This research sought to explore these effects using EEG microstate analysis. In this double-blind, randomized, sham-controlled study, resting-state functional MRI was employed to pinpoint the left dorsolateral prefrontal cortex (DLPFC) region that exhibited the strongest functional connectivity to the nucleus accumbens (NAcc), used as the target for rTMS stimulation. Rest-state EEG data from 49 depressive patients with anhedonia(active=26, sham=23) were analyzed both at baseline and after treatment. In addition, a group of 15 healthy participants was included to serve as baseline controls. Resting-state EEG data were collected at baseline and post-treatment. Using polarity-insensitive k-means clustering, EEG microstates were segmented into five categories (A-E). Circuit-targeted rTMS significantly alleviated symptoms of anhedonia and depression. Compared to healthy controls, patients with anhedonia showed reduced microstate B and C occurrence, along with increased microstate D duration. After rTMS targeting the DLPFC-NAcc pathway, the active treatment group exhibited normalization of microstate C occurrence and a reduction in microstate E duration. Notably, the increase in microstate C was significantly correlated with improvements in anticipatory anhedonia, and these changes were observed specifically in treatment responders. The findings suggest that microstate C is linked to anhedonia and could serve as a reliable biomarker for personalized rTMS treatment. These results provide insights into the neural mechanisms underlying rTMS for anhedonia and highlight the potential of EEG microstate analysis in guiding personalized treatment strategies for depression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
期刊最新文献
Muscarinic cholinergic system of the dorsal hippocampus involvement in the modulation of formalin-induced orofacial nociception and relevant memory impairment in rats Identification of Prolyl endopeptidase as a novel anti-depression target of Genipin-1-b-D-gentiobioside in brain tissues CRMP2 in the hippocampus alleviates chronic stress-induced depressive-like behaviours in mice by affecting synaptic function Unlocking the therapeutic promise of miRNAs in promoting amyloid-β clearance for Alzheimer's disease The study on effects of acute exposure to high altitude hypoxia on cognitive function in lowlander
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1