{"title":"A relative metabolic flux analysis model of glucose anaplerosis.","authors":"Heesoo Jeong, Nathaniel M Vacanti","doi":"10.1016/j.abb.2025.110330","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose provides substrate for the predominant anaplerotic pathway which involves the activity of pyruvate carboxylase (PC). PC-mediated anaplerosis has been extensively studied as a metabolic regulator in glycolytic cells during tumorigenesis and metastasis. Herein, inaccuracies in established methods to measure relative intracellular flux through PC are highlighted and a compartmentalized condensed metabolic network (CCMN) is used to resolve the total malate pool into relative contributions from PC and other sources by metabolic flux analysis (MFA) with [U-<sup>13</sup>C<sub>6</sub>]glucose tracing. Performance of the CCMN method is evaluated in breast cancer cell lines that are exposed to small molecules targeting metabolism. Across conditions and cell lines, the CCMN approach yields results nearest to an accepted gold-standard methodology, using [3-<sup>13</sup>C]glucose, or even exposes the gold standard's limitations. The CCMN method does not require a separate experiment with a much more costly and generally less informative metabolic tracer, such as [3-<sup>13</sup>C]glucose, and in some cases, may outperform its application.</p>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":" ","pages":"110330"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.abb.2025.110330","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucose provides substrate for the predominant anaplerotic pathway which involves the activity of pyruvate carboxylase (PC). PC-mediated anaplerosis has been extensively studied as a metabolic regulator in glycolytic cells during tumorigenesis and metastasis. Herein, inaccuracies in established methods to measure relative intracellular flux through PC are highlighted and a compartmentalized condensed metabolic network (CCMN) is used to resolve the total malate pool into relative contributions from PC and other sources by metabolic flux analysis (MFA) with [U-13C6]glucose tracing. Performance of the CCMN method is evaluated in breast cancer cell lines that are exposed to small molecules targeting metabolism. Across conditions and cell lines, the CCMN approach yields results nearest to an accepted gold-standard methodology, using [3-13C]glucose, or even exposes the gold standard's limitations. The CCMN method does not require a separate experiment with a much more costly and generally less informative metabolic tracer, such as [3-13C]glucose, and in some cases, may outperform its application.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.