{"title":"Protection of Mice Vaccinated with a New B Cell and T Cell Epitopes Cocktail from Staphylococcus aureus Challenge in Skin Infection Model.","authors":"Samar M Solyman, Shymaa A Kamal, Amro S Hanora","doi":"10.1007/s00284-025-04102-7","DOIUrl":null,"url":null,"abstract":"<p><p>Developing an effective vaccine against Staphylococcus aureus (S. aureus) is a key global health concern, especially with the increased reports of multidrug-resistant (MDR) S. aureus strains. Previous attempts for S. aureus vaccine development were unsuccessful. In this study, Manganese transport protein C (MABC) B cell epitopes, Nickel ABC transporter (NABC) B cell & T cell epitopes, and Phosphatidylinositol phosphodiesterase (PIc) B cell & T cell epitopes were used as a vaccine in mice skin infection model. Mice immunized with peptide mixture and MABC peptide group showed the best skin lesion healing results. The protection level was correlated with the highest IgG level, highest levels of interferon-gamma (INF γ), and lowest levels of interleukin-2 (IL-2). The peptide mixture group also showed the highest count of CD4/ CD8 cells. Results demonstrated that the inclusion of B cell and T cell epitopes of multiple genes improved both the humoral and cellular immunity and resulted in the best outcome in the skin infection mice model. A more expanded in-vivo study in different mice models is recommended for testing MABC, NABC, and PIc B cells and T cells peptides cocktail as promising S. aureus vaccine.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 3","pages":"128"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-025-04102-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing an effective vaccine against Staphylococcus aureus (S. aureus) is a key global health concern, especially with the increased reports of multidrug-resistant (MDR) S. aureus strains. Previous attempts for S. aureus vaccine development were unsuccessful. In this study, Manganese transport protein C (MABC) B cell epitopes, Nickel ABC transporter (NABC) B cell & T cell epitopes, and Phosphatidylinositol phosphodiesterase (PIc) B cell & T cell epitopes were used as a vaccine in mice skin infection model. Mice immunized with peptide mixture and MABC peptide group showed the best skin lesion healing results. The protection level was correlated with the highest IgG level, highest levels of interferon-gamma (INF γ), and lowest levels of interleukin-2 (IL-2). The peptide mixture group also showed the highest count of CD4/ CD8 cells. Results demonstrated that the inclusion of B cell and T cell epitopes of multiple genes improved both the humoral and cellular immunity and resulted in the best outcome in the skin infection mice model. A more expanded in-vivo study in different mice models is recommended for testing MABC, NABC, and PIc B cells and T cells peptides cocktail as promising S. aureus vaccine.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.