Sagorika Panda , Rajasri Sahoo , Santi Lata Sahoo , Ranjit Manoranjan , R.C Patra
{"title":"Comparative larvicidal, pupicidal, adulticidal activity of Artemisia nilagirica (C.B. Cl) pamp extract in controlling Culex quinquefasciatus, Anopheles stephensi, Aedes aegypti and Aedes albopictus","authors":"Sagorika Panda , Rajasri Sahoo , Santi Lata Sahoo , Ranjit Manoranjan , R.C Patra","doi":"10.1016/j.exppara.2025.108913","DOIUrl":null,"url":null,"abstract":"<div><div>Vector-borne diseases cause increase in burden, poverty, social liability and death all over the world. Mosquitoes serve as the vector for malaria, dengue, filariasis, yellow fever and also play a major role in transmission of chikungunya and Zika virus. The development of mosquitocidal resistance and associated health problems with the use of synthetic insecticides, have paved the way to control mosquito population by using plant-based botanicals. This study was carried out to evaluate the larvicidal, pupicidal and adulticidal properties of six solvent extracts of <em>Artemisia nilagirica</em> (C.B.Cl) against four infectious vector mosquitoes <em>Anopheles stephensi</em>, <em>Aedes aegypti</em>, <em>Aedes albopictus</em> and <em>Culex quinquefasciatus</em>, by assessing LC<sub>50</sub> and LC<sub>90</sub> mortality values. Among all six leaf solvent extracts, chloroform extract had higher toxicity (LC<sub>50</sub> = 127.27 ppm and LC<sub>90</sub> = 544.45 ppm) against fourth instar larva of <em>C. quinquefasciatus</em> and aqueous extract had lowest lethal effects (LC<sub>50</sub> = 583.33 ppm and LC<sub>90</sub> = 927.27 ppm) against fourth instar larva of <em>A. aegypti</em>. Moderate results were found in n-hexane, petroleum ether, methanol and ethanol plant extracts. Phytochemical analysis by GC-MS method confirms presence of significant 12 bioactive compounds like Bi-cyclo (3.1.1) heptanes-2, 4, 6 trimethyl, 3, 7, 11, 15- Tetramethyl-1.2 hexadecan-1-ol, Thiophene, Tetrahydro-2-methyl 1,3 propane diamine and camphor, which were responsible for insecticidal activity. Altogether, current study would serve as an initial step towards replacement of synthetic insecticides to plant-based bio-pesticide against dreadful vector mosquitoes in future.</div></div>","PeriodicalId":12117,"journal":{"name":"Experimental parasitology","volume":"271 ","pages":"Article 108913"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014489425000189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Vector-borne diseases cause increase in burden, poverty, social liability and death all over the world. Mosquitoes serve as the vector for malaria, dengue, filariasis, yellow fever and also play a major role in transmission of chikungunya and Zika virus. The development of mosquitocidal resistance and associated health problems with the use of synthetic insecticides, have paved the way to control mosquito population by using plant-based botanicals. This study was carried out to evaluate the larvicidal, pupicidal and adulticidal properties of six solvent extracts of Artemisia nilagirica (C.B.Cl) against four infectious vector mosquitoes Anopheles stephensi, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus, by assessing LC50 and LC90 mortality values. Among all six leaf solvent extracts, chloroform extract had higher toxicity (LC50 = 127.27 ppm and LC90 = 544.45 ppm) against fourth instar larva of C. quinquefasciatus and aqueous extract had lowest lethal effects (LC50 = 583.33 ppm and LC90 = 927.27 ppm) against fourth instar larva of A. aegypti. Moderate results were found in n-hexane, petroleum ether, methanol and ethanol plant extracts. Phytochemical analysis by GC-MS method confirms presence of significant 12 bioactive compounds like Bi-cyclo (3.1.1) heptanes-2, 4, 6 trimethyl, 3, 7, 11, 15- Tetramethyl-1.2 hexadecan-1-ol, Thiophene, Tetrahydro-2-methyl 1,3 propane diamine and camphor, which were responsible for insecticidal activity. Altogether, current study would serve as an initial step towards replacement of synthetic insecticides to plant-based bio-pesticide against dreadful vector mosquitoes in future.
期刊介绍:
Experimental Parasitology emphasizes modern approaches to parasitology, including molecular biology and immunology. The journal features original research papers on the physiological, metabolic, immunologic, biochemical, nutritional, and chemotherapeutic aspects of parasites and host-parasite relationships.