Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder.

IF 14.8 1区 医学 Q1 UROLOGY & NEPHROLOGY Kidney international Pub Date : 2025-02-06 DOI:10.1016/j.kint.2025.01.022
Shun-Neng Hsu, Louise A Stephen, Kanchan Phadwal, Scott Dillon, Roderick Carter, Nicholas M Morton, Ineke Luijten, Katie Emelianova, Anish K Amin, Vicky E Macrae, Tom C Freeman, Yu-Juei Hsu, Katherine A Staines, Colin Farquharson
{"title":"Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder.","authors":"Shun-Neng Hsu, Louise A Stephen, Kanchan Phadwal, Scott Dillon, Roderick Carter, Nicholas M Morton, Ineke Luijten, Katie Emelianova, Anish K Amin, Vicky E Macrae, Tom C Freeman, Yu-Juei Hsu, Katherine A Staines, Colin Farquharson","doi":"10.1016/j.kint.2025.01.022","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). However, the pathophysiology of ROD remains unclear. Here we examine the hypothesis that stalled mitophagy within osteocytes of CKD-MBD mouse models contributes to bone loss. RNA-seq analysis revealed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3 was inconsistent with functional mitophagy, and in mito-QC reporter mice with ROD, there was a two to three-fold increase in osteocyte mitolysosomes. To determine if uremic toxins were potentially responsible for these observations, treatment of cultured osteoblasts with uremic toxins revealed increased mitolysosome number and mitochondria with distorted morphology. Membrane potential and oxidative phosphorylation were also decreased, and oxygen-free radical production increased. The altered p62 /SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery, and the effects of uremic toxins were reversible by rapamycin. A causal link between uremic toxins and the development of mitochondrial abnormalities and ROD was established by showing that a mitochondria-targeted antioxidant (MitoQ) and the charcoal adsorbent AST-120 were able to mitigate the uremic toxin-induced mitochondrial changes and improve bone health. Overall, our study shows that impaired clearance of damaged mitochondria may contribute to the ROD phenotype. Targeting uremic toxins, oxygen-free radical production and the mitophagy process may offer novel routes for intervention to preserve bone health in patients with CKD-MBD. This would be timely as our current armamentarium of anti-fracture medications for patients with severe CKD-MBD is limited.</p>","PeriodicalId":17801,"journal":{"name":"Kidney international","volume":" ","pages":""},"PeriodicalIF":14.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.kint.2025.01.022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). However, the pathophysiology of ROD remains unclear. Here we examine the hypothesis that stalled mitophagy within osteocytes of CKD-MBD mouse models contributes to bone loss. RNA-seq analysis revealed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3 was inconsistent with functional mitophagy, and in mito-QC reporter mice with ROD, there was a two to three-fold increase in osteocyte mitolysosomes. To determine if uremic toxins were potentially responsible for these observations, treatment of cultured osteoblasts with uremic toxins revealed increased mitolysosome number and mitochondria with distorted morphology. Membrane potential and oxidative phosphorylation were also decreased, and oxygen-free radical production increased. The altered p62 /SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery, and the effects of uremic toxins were reversible by rapamycin. A causal link between uremic toxins and the development of mitochondrial abnormalities and ROD was established by showing that a mitochondria-targeted antioxidant (MitoQ) and the charcoal adsorbent AST-120 were able to mitigate the uremic toxin-induced mitochondrial changes and improve bone health. Overall, our study shows that impaired clearance of damaged mitochondria may contribute to the ROD phenotype. Targeting uremic toxins, oxygen-free radical production and the mitophagy process may offer novel routes for intervention to preserve bone health in patients with CKD-MBD. This would be timely as our current armamentarium of anti-fracture medications for patients with severe CKD-MBD is limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Kidney international
Kidney international 医学-泌尿学与肾脏学
CiteScore
23.30
自引率
3.10%
发文量
490
审稿时长
3-6 weeks
期刊介绍: Kidney International (KI), the official journal of the International Society of Nephrology, is led by Dr. Pierre Ronco (Paris, France) and stands as one of nephrology's most cited and esteemed publications worldwide. KI provides exceptional benefits for both readers and authors, featuring highly cited original articles, focused reviews, cutting-edge imaging techniques, and lively discussions on controversial topics. The journal is dedicated to kidney research, serving researchers, clinical investigators, and practicing nephrologists.
期刊最新文献
Editorial Board Table of Contents in this issue "Star chain pattern" of focal emphysematous pyelonephritis in polycystic kidney disease Hepatic venous outflow obstruction in autosomal dominant polycystic kidney disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1