Jie Wen, Yunhan Sun, Li Ma, Tingjian Zu, Na Wang, Tianqi Zhang, Jin Liang, Yulei Zhang, Haoyang Lu, Yihua Wu, Shizhou Zhang
{"title":"Y-27632 Suppresses the Growth and Migration of Oral Squamous Cell Carcinoma, but Upregulates Autophagy by Suppressing mTOR Effectors.","authors":"Jie Wen, Yunhan Sun, Li Ma, Tingjian Zu, Na Wang, Tianqi Zhang, Jin Liang, Yulei Zhang, Haoyang Lu, Yihua Wu, Shizhou Zhang","doi":"10.1111/jop.13603","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Rho-associated protein kinase (ROCK) inhibitor Y-27632 is a potential immunotherapeutic agent for cancer treatment. Y-27632 blocks the growth and migration of oral squamous cell carcinoma (OSCC) CAL-27 cells. However, detailed studies on the underlying mechanisms have not yet been reported.</p><p><strong>Methods: </strong>We investigated the effects of Y-27632 on the proliferation, migration, and invasion of OSCC cells (CAL-27, SCC-4, and SCC-9) using the Cell Counting Kit-8 assay, ethynyl-2'-deoxyuridine staining, cell scratch, and transwell assay in vitro. Next, ROCK1/2 was knocked down using siRNA to confirm that the effects of Y-27632 were mediated by the inhibition of ROCK activity. A xenograft mouse model was used to verify the effects of Y-27632 in vivo. The mechanisms underlying Y-27632-induced tumor suppression were detected using western blotting and qRT-PCR.</p><p><strong>Results: </strong>Our data demonstrated that Y-27632 potently inhibited OSCC cells (CAL-27, SCC-4, and SCC-9) by inhibiting ROCK activity. In vivo assays confirmed that Y-27632 suppressed OSCC growth by reducing cell proliferation. Biochemical assays demonstrated that Y-27632 inactivated the AKT pathway, and treatment with SC79, an AKT activator, rescued the cell growth and migration inhibition elicited by Y-27632. Further investigation revealed that Y-27632 enhanced autophagy by suppressing the AKT/mTOR pathway.</p><p><strong>Conclusion: </strong>Our study demonstrated that Y-27632 significantly suppressed the growth and migration of OSCC cells and upregulated autophagy via the AKT/mTOR pathway, thus providing a potential therapeutic drug for patients with OSCC.</p>","PeriodicalId":16588,"journal":{"name":"Journal of Oral Pathology & Medicine","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Pathology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jop.13603","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Rho-associated protein kinase (ROCK) inhibitor Y-27632 is a potential immunotherapeutic agent for cancer treatment. Y-27632 blocks the growth and migration of oral squamous cell carcinoma (OSCC) CAL-27 cells. However, detailed studies on the underlying mechanisms have not yet been reported.
Methods: We investigated the effects of Y-27632 on the proliferation, migration, and invasion of OSCC cells (CAL-27, SCC-4, and SCC-9) using the Cell Counting Kit-8 assay, ethynyl-2'-deoxyuridine staining, cell scratch, and transwell assay in vitro. Next, ROCK1/2 was knocked down using siRNA to confirm that the effects of Y-27632 were mediated by the inhibition of ROCK activity. A xenograft mouse model was used to verify the effects of Y-27632 in vivo. The mechanisms underlying Y-27632-induced tumor suppression were detected using western blotting and qRT-PCR.
Results: Our data demonstrated that Y-27632 potently inhibited OSCC cells (CAL-27, SCC-4, and SCC-9) by inhibiting ROCK activity. In vivo assays confirmed that Y-27632 suppressed OSCC growth by reducing cell proliferation. Biochemical assays demonstrated that Y-27632 inactivated the AKT pathway, and treatment with SC79, an AKT activator, rescued the cell growth and migration inhibition elicited by Y-27632. Further investigation revealed that Y-27632 enhanced autophagy by suppressing the AKT/mTOR pathway.
Conclusion: Our study demonstrated that Y-27632 significantly suppressed the growth and migration of OSCC cells and upregulated autophagy via the AKT/mTOR pathway, thus providing a potential therapeutic drug for patients with OSCC.
期刊介绍:
The aim of the Journal of Oral Pathology & Medicine is to publish manuscripts of high scientific quality representing original clinical, diagnostic or experimental work in oral pathology and oral medicine. Papers advancing the science or practice of these disciplines will be welcomed, especially those which bring new knowledge and observations from the application of techniques within the spheres of light and electron microscopy, tissue and organ culture, immunology, histochemistry and immunocytochemistry, microbiology, genetics and biochemistry.